
NUT Quality Assurance and Build Automation Guide

Jim Klimov

NUT Quality Assurance and Build Automation Guide ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.8.2.2705
2.8.2.2705-

2705+g4f84c7dc6

2025-04-03 Current release snapshot of Network UPS Tools
(NUT).

2.8.2 2024-04-01 Some changes to docs and recipes, libnutscan
API and functionality. Added nutconf (library and
tool). Fixed some regressions and added
improvements for certain new device series.

JK

NUT Quality Assurance and Build Automation Guide iii

Contents

1 NUT Quality Assurance 1

1.1 Documentation . 1

1.2 Source code . 1

1.2.1 Use of standards . 1

1.2.2 QA tools and metrics . 2

1.2.3 Runtime quality . 2

2 Code and recipe analysis 3

2.1 GNU Autotools distcheck . 3

2.2 Valgrind checks . 3

2.2.1 VALGRIND resources . 4

2.3 cppcheck . 4

2.4 Static analysis by compilers . 4

2.4.1 Pre-set warning options . 4

2.5 Shell script checks . 5

2.6 Documentation spelling checks . 5

3 Test automation 6

3.1 The ci_build.sh script . 6

3.2 Test programs in NUT codebase . 7

3.3 NUT Integration Testing suite (aka NIT) . 7

4 Continuous Integration (NUT CI farm) technologies 8

4.1 CI Farm configuration notes . 8

4.2 Multiple FOSS CI providers and technologies . 8

4.3 Jenkins is the way . 8

4.3.1 The jenkins-dynamatrix library . 9

4.3.2 Jenkinsfile-dynamatrix cases in NUT sources . 9

4.3.3 Jenkins CI . 9

4.4 AppVeyor CI . 10

4.5 CircleCI . 10

4.6 Travis CI . 10

4.7 CodeQL . 11

NUT Quality Assurance and Build Automation Guide iv

5 Continuous Integration (NUT CI farm) build agent preparation 11
5.1 Custom NUT CI farm build agents: VMs on DigitalOcean . 11

5.2 Setting up the non-standard VM farm for NUT CI on DigitalOcean . 11

5.2.1 Design trade-offs . 11

OS images . 11

Networking . 12

Common notes for illumos VMs . 12

5.2.2 Using the DigitalOcean Recovery ISO . 13

5.2.3 OpenIndiana . 13

DO-NUT-CI-OI VM creation . 14

DO-NUT-CI-OI VM OS transfer . 14

DO-NUT-CI-OI VM preparation as build agent . 17

5.2.4 OmniOS . 17

DO-NUT-CI-OO VM preparation . 18

5.2.5 FreeBSD . 18

DO-NUT-CI-FREEBSD VM preparation . 18

5.2.6 OpenBSD . 18

DO-NUT-CI-OPENBSD VM creation . 18

5.2.7 Linux . 18

DO-NUT-CI-LINUX VM creation . 19

DO-NUT-CI-LINUX VM OS transfer . 19

DO-NUT-CI-LINUX VM preparation as build agent . 19

5.3 Custom NUT CI farm build agents: LXC multi-arch containers . 19

5.4 Setting up the multi-arch Linux LXC container farm for NUT CI . 19

5.4.1 Common preparations . 19

5.4.2 Setup a container . 21

Initial container installation (for various guest OSes) . 21

Initial container-related setup . 23

5.4.3 Shepherd the herd . 24

5.4.4 Further setup of the containers . 25

Arch Linux containers . 26

5.4.5 Troubleshooting . 27

5.5 Connecting Jenkins to the containers . 27

5.5.1 Agent Labels . 27

Labels for QEMU . 27

Labels for native builds . 28

5.5.2 Generic agent attributes . 28

5.5.3 Where to run agent.jar . 28

Using Jenkins SSH Build Agents . 29

Using Jenkins Swarm Agents . 30

5.5.4 Sequentializing the stress . 30

Running one agent at a time . 30

Sequentializing the git cache access . 31

NUT Quality Assurance and Build Automation Guide v

6 Prerequisites for building NUT on different OSes 31

6.1 General call to Test the ability to configure and build . 32

6.2 Build prerequisites to make NUT from scratch on various Operating Systems 32

6.2.1 Debian 10/11/12 . 32

6.2.2 CentOS 6 and 7 . 35

Prepare CentOS repository mirrors . 35

Set up CentOS packages for NUT . 35

6.2.3 Arch Linux . 38

6.2.4 Slackware Linux 15 . 39

6.2.5 FreeBSD 12.2 . 42

6.2.6 OpenBSD 6.5 . 44

6.2.7 NetBSD 9.2 . 46

6.2.8 OpenIndiana as of releases 2021.10 to 2024.04 . 49

6.2.9 OmniOS CE (as of release 151036) . 52

6.2.10 Solaris 8 . 53

6.2.11 MacOS with homebrew . 55

6.2.12 Windows builds . 56

Windows with mingw . 56

Windows with MSYS2 . 57

NUT Quality Assurance and Build Automation Guide vi

Abstract

The aim of this document is to describe the different ways we ensure and maintain the source code quality of Network UPS Tools,
its portability to various platforms, and non-regression.

Previous NUT releases may have included parts of this documentation in the developer guide or user manual. Most of this
information can be applied to both automated testing environments and local development workflows.

NUT Quality Assurance and Build Automation Guide 1 / 59

Warning
This is a Work In Progress document.

1 NUT Quality Assurance

Recognizing the critical nature of NUT, the NUT Quality Assurance (NQA) effort has been established to improve NUT where
necessary, and to maintain software quality as high as it should be.

NQA is present in many aspects and areas of NUT.

1.1 Documentation

The documentation toolchain uses AsciiDoc to output both HTML pages and manual pages (troff). This single point of control
fills many gaps, suppresses many redundancies, and optimizes documentation management in general.

• The NUT website and HTML documentation are tested for W3C XHTML 1.1 and CSS compliance. This can be counter
verified by clicking the W3C XHTML 1.1 and CSS icons, at the bottom of each page.

• Documentation source files are spell checked, using Aspell, both interactively (using make spellcheck-interactive) and auto-
matically in NUT CI farm runs (using make spellcheck).

Note
A NUT dictionary is also available (as docs/nut.dict in NUT sources), providing a glossary of terms related to power
devices and management, as well as partial terms, technical jargon and author names.

1.2 Source code

1.2.1 Use of standards

NUT promotes and uses many standards, such as:

• the variable names standard used in NUT,

• the coding rules and best practices for developers,

• the use of a software architecture limiting developments to the very minimum,

• the use of standard Free and OpenSource Software components, like:

– the USB library,

– the Net SNMP project,

– the Neon library,

– the OpenSSL library (to be replaced by NSS, which is more license compliant with NUT and can be FIPS 140 certified),

– the TCP Wrappers library.

https://asciidoc.org/
http://aspell.net

NUT Quality Assurance and Build Automation Guide 2 / 59

1.2.2 QA tools and metrics

NUT’s quality is constantly monitored using many tools, like:

• a Revision Control System (Git) to track development and ease regression fixes.

• OBSOLETE: Buildbot for older take on multi-platform builds, and the

• new dedicated Jenkins incarnation of the NUT CI Farm with "legacy UI" for main branch and PRs, also accessible at the slower
but slicker-looking Blue Ocean user interface for activity, branches and PRs, are all used to automate the compile/test cycle,
using numerous platforms, target distributions, C/C++ revisions, compiler toolkits and make program implementations. Any
build failure is caught early, and fixed quickly. Also we get to see if incoming pull requests (as well as Git branch HEADs) do
not have code (or recipe) that is instantly faulty and can not build on one of the platforms we track even with relaxed warnings.

• a project portal with trackers for bugs, feature request, patches and tasks, currently at GitHub

• CodeQL (previously LGTM.COM) automatically checking C/C++ and Python code

• Static code analysis:

– Coverity Scan overview of NUT

– status: Coverity Scan Build Status

– cppcheck as part of NUT CI farm builds and reports

NUT QA also relies on external tools and trackers, like:

• Clang

• the Debian QA tools, available through the NUT Package Tracking System:

– Lintian general QA checks,

– piuparts automates the installation, upgrade and removal testing processes.

• a runtime testing suite, which automates the inter-layer communication testing (driver — upsd — upsmon / clients), that is part
of Ubuntu. The NUT testing script is available in the Ubuntu QA Regression Testing suite.

It installs NUT packages, configures it with the dummy-ups driver, changes a few data points and checks that these are well
propagated with upsc.

• similar approach is explored in NIT (NUT Integration Testing) suite, which is part of the codebase and automated with make
check-NIT; it can also be added to default make check activities by running configure --enable-check-NIT

– Note that developers updating components which directly impact NIT runs may benefit from make check-NIT-devel
target, to rebuild the upsd, dummy-ups, cppnit and other programs used in the test as they iterate.

• Redhat / Fedora Bug tracker

• Black Duck Open Hub (formerly Ohloh.net) provides metrics on NUT source code base and activity.

1.2.3 Runtime quality

• NUT provides many security features (or docs/security.txt in NUT sources for up-to-date information) to ensure a
maximum runtime security level.

• Packages use several Hardening methods to protect NUT binaries.

https://github.com/networkupstools/nut
http://buildbot.networkupstools.org/public/nut/
https://ci.networkupstools.org/job/nut/job/nut/job/master/
https://ci.networkupstools.org/job/nut/job/nut/view/change-requests/
https://ci.networkupstools.org/blue/organizations/jenkins/nut%2Fnut/activity/
https://ci.networkupstools.org/blue/organizations/jenkins/nut%2Fnut/branches/
https://ci.networkupstools.org/blue/organizations/jenkins/nut%2Fnut/pr/
https://scan.coverity.com/projects/networkupstools-nut
https://tracker.debian.org/pkg/nut
http://piuparts.debian.org/sid/source/n/nut.html
https://git.launchpad.net/ubuntu/+source/nut/tree/debian/tests/test-nut.py
https://code.edge.launchpad.net/qa-regression-testing
https://bugzilla.redhat.com/buglist.cgi?component=nut
https://www.openhub.net/p/nut
http://wiki.debian.org/Hardening

NUT Quality Assurance and Build Automation Guide 3 / 59

2 Code and recipe analysis

2.1 GNU Autotools distcheck

The Network UPS Tools project code base is managed by the GNU Build System colloquially known as "The Autotools",
which include autoconf, automake and many other components. Some of their important roles are to generate the portable
shell configure script to detect build environment capabilities and other nuances, and to help actually build the project with
Makefile recipes (supported by many implementations of the standard POSIX make tool) generated from the Makefile.am
templates by the automake tool.

Among the many standard recipes promulgated by the Autotools, make dist handles creation of archive files with a release (or
other) snapshot of a software project, which "distribute" all the original or generated files needed to build and install that project
on a minimally capable end-user system (should have a compiler, make, and dependency libraries/headers, but is not required to
have autotools, manual page generation tools, etc.)

The make distcheck goal allows to validate that the constructed archive is in fact sufficient for such a build (includes all
required files), and also that the code structure and its recipes properly support out-of-tree builds (as used on multi-platform and
cross-build environments) without contaminating the source code directory structure.

NUT’s root ‘Makefile.am` defines the DISTCHECK_FLAGS eventually passed to the configure script executed as part of
distcheck validation, and the default set of the flags requires to build everything. This in turn constrains the set of systems
where this validation can be performed to build environments that have all dependency projects installed, have the documentation
generation tools, etc. in order to make sure that for all files that are compiled or otherwise processed by the build routine, we
actually distribute the sources (implicitly as calculated by programs’ listed sources, or via explicit EXTRA_DIST and similar
statements) regardless of features enabled or not to be built in the original run.

To avoid this constraint and allow the relevant distcheck-like validation to happen on environments without "everything and
a kitchen sink" installed, further recipes are defined by NUT, such as:

• distcheck-light: does not require the optional features to be built, but just allow them (using --with-all=auto
--with-ssl=auto --with-doc=auto etc. flags);

• distcheck-light-man: similar to the above, but require validation that manual pages can all be built (do not build PDF
or HTML formats, though);

• distcheck-fake-man: for formal validation on systems without documentation processing tools used by NUT recipes,
populate the distribution archive with "PLACEHOLDER" contents of missing pre-generated manual pages (such an archive
SHOULD NOT be delivered to end-users as a fully functional release), so the validation of recipes around pre-built documen-
tation installation can be performed;

• distcheck-ci: based on current build circumstances, dispatch to standard strict distcheck or to distcheck-fake-man.

Other recipes based on this concept are also defined, including:

• distcheck-valgrind: build whatever code we can, and do not waste time on documentation processing (--with-all=auto
--with-ssl=auto --with-doc=skip), to run the NUT test programs (make check in the built environment) through
the Valgrind memory-checking tool.

2.2 Valgrind checks

NUT sources include a helper script and a suppression file which allow developers and CI alike to easily run built programs
through the popular Valgrind tool and check for memory leaks, un-closed file descriptors, and more.

One use-case to cover the population of NUT self-test programs (and the common code they pull in from NUT libraries and
drivers) is automated as the make distcheck-valgrind goal.

https://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.html
https://valgrind.org/

NUT Quality Assurance and Build Automation Guide 4 / 59

2.2.1 VALGRIND resources

Helper script and suppression file to analyze NUT binaries.

Example use-case:

:; make -ks -j && LD_LIBRARY_PATH=`pwd`/clients/.libs \
./scripts/valgrind/valgrind.sh ./tools/nut-scanner/nut-scanner -DDDDDD -m auto

Note that the script is generated under ${top_builddir} by configure from a template file located in ${top_srcdir}/scripts/valgrind/valgrind.sh.in.
You might be able to run it directly, falling back to a valgrind program in your PATH, if any.

See also:

• Valgrind Suppression File How-to

– Notably, add --gen-suppressions=all --error-limit=no to valgrind program options to generate sup-
pression snippets

2.3 cppcheck

The root Makefile.am includes a recipe to run a special build of NUT analyzed by the cppcheck tool (if detected by
configure script) and produce a cppcheck.xml report for further tools to use, e.g. visualize it by the Jenkins Warnings
plugin.

2.4 Static analysis by compilers

As compilers like GCC and LLVM/CLANG evolve, so do their built-in code analyzers and warnings. In fact, this is a large
part of the reasoning behind using a vast array of systems along with the compilers they have (many points of view on the same
code discover different issues in it), and on another — behind the certain complexity pattern in NUT’s own code base, where
code recommended by one compiler seems offensive to another (so stacks of pragma expressions are used to quiesce certain
warnings around certain lines).

2.4.1 Pre-set warning options

The options chosen into pre-sets that can be selected by configure script options are ones we use for different layers of CI
tests.

Values to note include:

• --enable-Werror(=yes/no)— make warnings fatal;

• --enable-warnings(=.../no)— enable certain warning presets:

– gcc-hard, clang-hard, gcc-medium, clang-medium, gcc-minimal, clang-minimal, all— actual defi-
nitions that are compiler-dependent (the latter just adds -Wall which may be relatively portable);

– hard, medium or minimal— if current compiler is detected as CLANG or GCC, apply corresponding setting from above
(or all otherwise);

– gcc or clang— apply the set of options (regardless of detected compiler) with default "difficulty" hard-coded in configure
script, to tweak as our codebase becomes cleaner;

– yes/auto (also takes effect if --enable-warnings is requested without an =ARG part) — if current compiler is de-
tected as CLANG or GCC, apply corresponding setting with default "difficulty" from above (or all otherwise).

https://wiki.wxwidgets.org/Valgrind_Suppression_File_Howto

NUT Quality Assurance and Build Automation Guide 5 / 59

Note that for backwards-compatibility reasons and to help filter out introduction of blatant errors, builds with compilers that
claim GCC compatibility can enable a few easy warning presets by default. This can be avoided with an explicit argument to
--disable-warnings (or --enable-warnings=no).

All levels of warnings pre-sets for GCC in particular do not enforce the -pedantic mode for builds with C89/C90/ANSI
standard revision (as guesstimated by CFLAGS content), because nowadays it complains more about the system and third-party
library headers, than about NUT codebase quality (and "our offenses" are mostly something not worth fixing in this era, such as
the use of __func__ in debug commands). If there still are practical use-cases that require builds of NUT on pre-C99 compiler
toolkits, pull requests are of course welcome — but the maintainer team does not intend to spend much time on that.

Hopefully this warnings pre-set mechanism is extensible enough if we would need to add more compilers and/or "difficulty
levels" in the future.

Finally, note that such pre-set warnings can be mixed with options passed through CFLAGS or CXXFLAGS values to your local
configure run, but it is up to your compiler how it interprets the resulting mix.

2.5 Shell script checks

The make shellcheck recipe finds files which the file tool determines to be POSIX or Bourne-Again shell scripts, and
runs them through respective interpreter’s (bash or system /bin/sh) test mode to validate the syntax works.

Given that the /bin/sh implementation varies wildly on different systems (e.g. Korn shell, BASH, DASH and many others),
this goal performed by CI on a large number of available platforms makes sure that the lowest-denominator syntax we use is
actually understood everywhere.

Note
At a later time additional tests, perhaps using the shellcheck tool, can be introduced into the stack.

The make shellcheck-nde recipe calls tests/nut-driver-enumerator-test.sh to self-test the scripts/upsdrvsvcctl/nut-driver-enumerator.sh.in
against an array of SHELL_PROGS (e.g. a list of interpreters provided by specific CI agents), and make sure that shell-script
based processing of ups.conf in various interpreters provides the exact spelling of expected results.

2.6 Documentation spelling checks

NUT recipes rely on the aspell tool (with aspell-en dictionary, default but different on numerous platforms), and a custom
maintained dictionary file (specified in Makefile variables as NUT_SPELL_DICT— by default, it is ${top_srcdir}/docs/nut.dict)
for additional words either unique to NUT or quite common but absent in older standard dictionaries on some systems. Oper-
ations are done according to LANG and LC_ALL values, both specified in Makefile variables as ASPELL_ENV_LANG, by
default en.UTF-8.

The "nut-website" generation has similar recipes and relies on integration with those provided by the main NUT code base, but
maintains its own custom dictionary for words only present in the website sources.

The root Makefile.am includes recipes which allow developers and maintainers to check spelling of all documentation (and/or
update the custom dictionary), while recipes in numerous subdirectories (where README.adoc or other specific documentation
files exist) have similar goals to check just their files.

The actual implementation of the goals is in docs/Makefile.am, and either calls the tool if it was detected by the configure
script, or skips work.

For each checked file, a *-spellchecked touch-file is created in respective ${builddir}, so it is not re-checked until the
source document, the custom dictionary, or the Makefile recipe is updated.

The ecosystem of Makefile.am files includes the following useful recipes:

• spellcheck: passively check that all used words are in some dictionary known to this system, or report errors for unknown
words;

NUT Quality Assurance and Build Automation Guide 6 / 59

• spellcheck-interactive: actively check the documents, and for unknown words start the interactive mode of aspell
so you can either edit the source text (replace typos with suggested correct spelling), update the custom dictionary, or ignore
the hit (to rephrase the paragraph later, etc.)

Note
This recipe can update the timestamp of the custom dictionary file, causing all documents to become fair game for re-checks
of their spelling. * spellcheck-sortdict: make sure the custom dictionary file is sorted alphanumerically (helpful in
case of manual edits) and the word count in the heading line is correct (helpful in case of manual edits or git branch merges).

The root Makefile.am also provides some aids for maintainers:

• spellcheck-interactive-quick: runs "passive" spellcheck in parallel make mode, and only if it errors out —
runs spellcheck-interactive;

• spellcheck-report-dict-usage: prepares a nut.dict.usage-report file to validate that words used in a cus-
tom dictionary are actually present in any NUT documentation source file.

3 Test automation

3.1 The ci_build.sh script

This script was originally introduced (following ZeroMQ/ZProject example) to automate CI builds, by automating certain sce-
narios driven by exported environment variables to set particular configure options and make some targets (chosen by the
BUILD_TYPE envvar). It can also be used locally to avoid much typing to re-run those scenarios during development.

Developers can directly use the scripts involved in CI builds to fix existing code on their workstations or to ensure support for
new compilers and C standard revisions, e.g. save a local file like this to call the common script with pre-sets:

$ cat _fightwarn-gcc10-gnu17.sh
#!/bin/sh

BUILD_TYPE=default-all-errors \
CFLAGS="-Wall -Wextra -Werror -pedantic -std=gnu17" \
CXXFLAGS="-Wall -Wextra -Werror -std=gnu++17" \
CC=gcc-10 CXX=g++-10 \

./ci_build.sh

. . . and then execute it to prepare a workspace, after which you can go fixing bugs file-by-file running a make after each save to
confirm your solutions and uncover the next issue to address :-)

Helpfully, the NUT CI farm build logs report the configuration used for each executed stage, so if some build combination fails
— you can just scroll to the end of that section and copy-paste the way to reproduce an issue locally (on an OS similar to that
build case).

Note that while spelling out sets of warnings can help in a quest to fix certain bugs during development (if only by removing
noise from classes of warnings not relevant to the issue one is working on), there is a reasonable set of warnings which NUT
codebase actively tries to be clean about (and checks in CI), detailed in the next section.

For the ci_build.sh usage like above, one can instead pass the setting via BUILD_WARNOPT=..., and require that all
emitted warnings are fatal for their build, e.g.:

$ cat _fightwarn-clang9-gnu11.sh
#!/bin/sh

BUILD_TYPE=default-all-errors \
BUILD_WARNOPT=hard BUILD_WARNFATAL=yes \
CFLAGS="-std=gnu11" \

NUT Quality Assurance and Build Automation Guide 7 / 59

CXXFLAGS="-std=gnu++11" \
CC=clang-9 CXX=clang++-9 CPP=clang-cpp \

./ci_build.sh

Finally, for refactoring effort geared particularly for fighting the warnings which exist in current codebase, the script con-
tains some presets (which would evolve along with codebase quality improvements) as BUILD_TYPE=fightwarn-gcc,
BUILD_TYPE=fightwarn-clang or plain BUILD_TYPE=fightwarn:

:; BUILD_TYPE=fightwarn-clang ./ci_build.sh

As a rule of thumb, new contributions must not emit any warnings when built in GNU99 mode with a minimal "difficulty" level
of warnings. Technically they must survive the part of test matrix across the several platforms tested by NUT CI and marked in
project settings as required to pass, to be accepted for a pull request merge.

Developers aiming to post successful pull requests to improve NUT can pass the --enable-warnings option to the configure
script in local builds to see how that behaves and ensure that at least in some set-up their contribution is viable. Note that different
compiler versions and vendors (gcc/clang/. . .), building against different OS and third-party dependencies, with different CPU
architectures and different language specification revisions, might all complain about different issues — and catching this in as
diverse range of set-ups as possible is why we have CI tests.

It can be beneficial for serial developers to set up a local BuildBot, Travis or a Jenkins instance with a matrix test job, to test their
local git repository branches with whatever systems they have available.

• https://github.com/networkupstools/nut/issues/823

While autoconf tries its best to provide portable shell code, sometimes there are builds of system shell that just fail under stress.
If you are seeing random failures of ./configure script in different spots with the same inputs, try telling ./ci_build.sh
to loop configuring until success (instead of quickly failing), and/or tell ./configure to use another shell at least for the
system call-outs, with options like these:

:; SHELL=/bin/bash CONFIG_SHELL=/bin/bash CI_SHELL_IS_FLAKY=true \
./ci_build.sh

3.2 Test programs in NUT codebase

FIXME: Write the chapter text.

For now, investigate files in the tests/ directory contents in NUT sources.

3.3 NUT Integration Testing suite (aka NIT)

This suite aims to simplify running upsd, a dummy-ups driver and a few clients to query them, as part of regular make check
routine or separately with existing binaries (should not impact any existing installation data, processes or communications).

Warning
Current working directory when starting the script should be the location where it may create temporary data (e.g. the
BUILDDIR).

See also The NUT testing script available in the Ubuntu QA Regression Testing suite and Debian packaging recipe doing a
similar job with NUT installed from packages and configuring it via files in standard path names.

A sandbox prepared by this script can be used for upsmon testing:

https://github.com/networkupstools/nut/issues/823
https://git.launchpad.net/ubuntu/+source/nut/tree/debian/tests/test-nut.py
https://code.edge.launchpad.net/qa-regression-testing
https://salsa.debian.org/debian/nut/-/tree/debian/debian/tests

NUT Quality Assurance and Build Automation Guide 8 / 59

:; make check-NIT-sandbox-devel &

Wait for sandbox, e.g. test that "${NUT_CONFPATH}/NIT.env-sandbox-ready"
file appeared; then source the envvars, e.g.:
:; sleep 5 ; while ! [-e ./tests/NIT/tmp/etc/NIT.env-sandbox-ready] ; do sleep 1 ; done
:; . ./tests/NIT/tmp/etc/NIT.env

Prepare upsmon.conf there, e.g.:
:; printf 'MINSUPPLIES 1\nPOWERDOWNFLAG "%s/killpower"\nSHUTDOWNCMD "date >> \"%s/nut- ←↩

shutdown.log\""\nMONITOR "%s@127.0.0.1:%s" 1 "%s" "%s" primary\n' \
"$NUT_STATEPATH" "$NUT_STATEPATH" 'dummy' "$NUT_PORT" \
'dummy-admin' "${TESTPASS_UPSMON_PRIMARY}" \
> "${NUT_CONFPATH}/upsmon.conf"

The nit.sh script supports a lot of environment variables to tune its behavior, notably NIT_CASE, NUT_PORT, NUT_STATEPATH
and NUT_CONFPATH, but also many more. See its sources, as well as the top-level Makefile.am recipe and the ./tests/NIT/tmp/etc/NIT.env
file generated during a test run, for more details and examples about the currently supported tunables.

4 Continuous Integration (NUT CI farm) technologies

4.1 CI Farm configuration notes

Note
This chapter contains information about NUT CI farm setup tricks that were applied at different times by the maintainer team to
ensure regular builds and tests of the codebase. Whether these are used in daily production today or not, similar setup should
be possible locally on developer and contributor machines.

4.2 Multiple FOSS CI providers and technologies

While there are many FOSS-friendly CI offerings, they are usually (and reasonably) focused on the OS market leaders — offering
recent releases of Linux, Windows and MacOS build agents, and sometimes a way to "bring your own device" to cover other
systems. The NUT CI farm does benefit from those offerings as well, using GitHub Actions with CodeQL for Linux code quality
inspection, AppVeyor CI for Windows, and CircleCI for MacOS, to name a few.

But on the other hand, being a massively multi-platform effort (and aiming to support older boxes that are still alive even if
their vendors and/or distro versions are not), a comprehensive NUT CI approach requires many machines running uncommon
operating systems. This is where custom virtual machines help, and more so — a core set of those hosted in the cloud and
dedicated to the project, rather than only some resources intermittently contributed by community members which come and go.

Note
Community-provided builders running on further systems are also welcome, and the option is of course supported, as managed
by the Jenkins-Dynamatrix effort which appeared due to such need, and runs the core NUT CI farm.

We have also had historic experience with FOSS CI providers (and community members’ machines) disappearing, so having
NUT CI farm goals covered by multiple independent implementations is also a feature beyond having yet another set of digital
eyes looking at our code quality (which is also a goal in itself).

4.3 Jenkins is the way

• https://stories.jenkins.io/user-story/jenkins-is-the-way-for-networkupstools/

• https://github.com/jenkins-infra/stories/blob/main/src/user-story/jenkins-is-the-way-for-networkupstools/index.yaml

https://github.com/networkupstools/jenkins-dynamatrix
https://stories.jenkins.io/user-story/jenkins-is-the-way-for-networkupstools/
https://github.com/jenkins-infra/stories/blob/main/src/user-story/jenkins-is-the-way-for-networkupstools/index.yaml

NUT Quality Assurance and Build Automation Guide 9 / 59

4.3.1 The jenkins-dynamatrix library

FIXME: Write the chapter text.

For now, see https://github.com/networkupstools/jenkins-dynamatrix sources (note the README and large comments at start
of files may be obsolete, as of this writing — documenting the initial ideas, but the implementation might differ from that over
time).

4.3.2 Jenkinsfile-dynamatrix cases in NUT sources

FIXME: Write the chapter text.

For now, see the Jenkinsfile-dynamatrix in the NUT sources (maybe only git), e.g. https://github.com/networkupstools/-
nut/blob/master/Jenkinsfile-dynamatrix for the practical pipeline preparation and hand-off to library implementation.

4.3.3 Jenkins CI

Since mid-2021, the NUT CI farm is implemented by several virtual servers courteously provided originally by Fosshost and
later by DigitalOcean.

These run various operating systems as build agents, and a Jenkins instance to orchestrate the builds of NUT branches and pull
requests on those agents.

This is driven by Jenkinsfile-dynamatrix and a Jenkins Shared Library called jenkins-dynamatrix which prepares a
matrix of builds across as many operating systems, bitnesses/architectures, compilers, make programs and C/C++ revisions as it
can — based on the population of currently available build agents and capabilities which they expose as agent labels.

This hopefully means that people interested in NUT can contribute to the build farm (and ensure NUT is and remains compatible
with their platform) by running a Jenkins Swarm agent with certain labels, which would dial into https://ci.networkupstools.org/
controller. Please contact the NUT maintainer if you want to participate in this manner.

The Jenkinsfile-dynamatrix recipe allows NUT CI farm to run different sets of build scenarios based on various con-
ditions, such as the name of branch being built (or PR’ed against), changed files (e.g. C/C++ sources vs. just docs), and some
build combinations may be not required to succeed.

For example, the main development branch and pull requests against it must cleanly pass all specified builds and tests on various
platforms with the default level of warnings specified in the configure script. These are balanced to not run too many build
scenarios overall, but just a quick and sufficiently representative set.

As another example, there is special handling for "fightwarn" pattern in the branch names to run many more builds with varying
warning levels and more variants of intermediate language revisions, and so expose concerns deliberately missed by default
warnings levels in "master" branch builds (the bar moves over time, as some classes of warnings become extinct from our
codebase).

Further special handling for branches named like fightwarn.*89.* regex enables more intensive warning levels for a
GNU89 build specifically (which are otherwise disabled as noisy yet not useful for supported C99+ builds), and is intended
to help develop fixes for support of this older language revision, if anyone would dare.

Many of those unsuccessful build stages are precisely the focus of the "fightwarn" effort, and are currently marked as "may fail",
so they end up as "UNSTABLE" (seen as orange bubbles in the Jenkins BlueOcean UI, or orange cells in the tabular list of stages
in the legacy UI), rather than as "FAILURE" (red bubbles) for build scenarios that were not expected to fail and usually represent
higher-priority problems that would block a PR.

Developers whose PR builds (or attempts to fix warnings) did not succeed in some cell of such build matrix, can look at the
individual logs of that cell. Beside indication from the compiler about the failure, the end of log text includes the command
which was executed by CI worker and can be reproduced locally by the developer, e.g.:

22:26:01 FINISHED with exit-code 2 cmd: (
22:26:01 [-x ./ci_build.sh] || exit
22:26:01
22:26:01 eval BUILD_TYPE="default-alldrv" BUILD_WARNOPT="hard" \

BUILD_WARNFATAL="yes" MAKE="make" CC=gcc-10 CXX=g++-10 \

https://github.com/networkupstools/jenkins-dynamatrix
https://github.com/networkupstools/nut/blob/master/Jenkinsfile-dynamatrix
https://github.com/networkupstools/nut/blob/master/Jenkinsfile-dynamatrix
http://fosshost.org
https://www.digitalocean.com/?refcode=d2fbf2b9e082&utm_campaign=Referral_Invite&utm_medium=Referral_Program&utm_source=badge
https://github.com/networkupstools/jenkins-dynamatrix
https://ci.networkupstools.org/

NUT Quality Assurance and Build Automation Guide 10 / 59

CPP=cpp-10 CFLAGS='-std=gnu99 -m64' CXXFLAGS='-std=gnu++11 -m64' \
LDFLAGS='-m64' ./ci_build.sh

22:26:01)

or for autotools-driven scenarios (which prep, configure, build and test in separate stages — so for reproducing a failed build you
should also look at its configuration step separately):

22:28:18 FINISHED with exit-code 0 cmd: ([-x configure] || exit; \
eval CC=clang-9 CXX=clang++-9 CPP=clang-cpp-9 CFLAGS='-std=c11 -m64' \
CXXFLAGS='-std=c++11 -m64' LDFLAGS='-m64' time ./configure)

To re-run such scenario locally, you can copy the line from eval (but without the eval keyword itself) up to and including the
executed script or tool, into your shell. Depending on locally available compilers, you may have to tweak the CC, CXX and CPP
arguments; note that a CPP may be specified as /path/to/CC -E for GCC and CLANG based toolkits at least, if they lack a
standalone preprocessor program (e.g. IntelCC).

Note
While NUT recipes do not currently recognize a separate CXXCPP, it would follow similar semantics.

Some further details about the NUT CI farm workers are available in Prerequisites for building NUT on different OSes (or
docs/config-prereqs.txt in NUT sources for up-to-date information) and Custom NUT CI farm build agents: LXC
multi-arch containers (or docs/ci-farm-lxc-setup.txt in NUT sources for up-to-date information) documentation.

4.4 AppVeyor CI

Primarily used for building NUT for Windows on Windows instances provided in the cloud — and so ensure non-regression
as well as downloadable archives with binary installation prototype area, intended for enthusiastic testing (proper packaging to
follow). NUT for Windows build-ability was re-introduced soon after NUT 2.8.0 release.

This relies on a few prerequisite packages and a common NUT configuration, as coded in the appveyor.yml file in the NUT
codebase.

4.5 CircleCI

Primarily used for building NUT for MacOS on instances provided in the cloud, and so ensure non-regression across several
Xcode releases.

This relies on a few prerequisite packages and a common NUT configuration, as coded in the .circleci/config.yml file
in the NUT codebase.

4.6 Travis CI

See the .travis.yml file in project sources for a detailed list of third party dependencies and a large matrix of CFLAGS and
compiler versions last known to work or to not (yet) work on operating systems available to that CI solution.

Note
The cloud Travis CI offering became effectively defunct for open-source projects in mid-2021, so the .travis.yml file in
NUT codebase is not actively maintained.
Local private deployments of Travis CI are possible, so if anybody does use it and has updated markup to share, they are
welcome to post PRs.

The NUT project on GitHub had integration with Travis CI to test a large set of compiler and option combinations, covering
different versions of gcc and clang, C standards, and requiring to pass builds at least in a mode without warnings (and checking
the other cases where any warnings are made fatal).

NUT Quality Assurance and Build Automation Guide 11 / 59

4.7 CodeQL

(Earlier this role was performed by LGTM.com) Run GitHub Actions for static analysis of C, C++ and Python code and recipes,
to produce suggestions based on common coding flaws and best-practice security patterns.

5 Continuous Integration (NUT CI farm) build agent preparation

5.1 Custom NUT CI farm build agents: VMs on DigitalOcean

This section details Installation of VMs on Digital Ocean.

5.2 Setting up the non-standard VM farm for NUT CI on DigitalOcean

Since 2023 the Network UPS Tools project employs virtual machines, hosted and courteously sponsored as part of FOSS support
program by DigitalOcean, for a significant part of the NUT CI farm based on a custom Jenkins setup.

Use of complete machines, virtual or not, in the NUT CI farm allows our compatibility and non-regression testing to be truly
multi-platform, spanning various operating system technologies and even (sometimes emulated) CPU architectures.

To that extent, while it is easy to deploy common OS images and manage the resulting VMs, there are only so many images
and platforms that are officially supported by the hosting as general-purpose "DigitalOcean VPS Droplets", and work with other
operating systems is not easy. But not impossible, either.

In particular, while there is half a dozen Linux distributions offered out of the box, official FreeBSD support was present earlier
but abandoned shortly before NUT CI farm migration from the defunct Fosshost.org considered this hosting option.

Still, there were community reports of various platforms including *BSD and illumos working in practice (sometimes with
caveats), which just needed some special tinkering to run and to manage. This chapter details how the NUT CI farm VMs were
set up on DigitalOcean.

5.2.1 Design trade-offs

Note that some design choices were made because equivalent machines existed earlier on Fosshost.org hosting, and filesystem
content copies or ZFS snapshot transfers were the least disruptive approach (using ZFS wherever possible also allows to keep the
history of system changes as snapshots, easily replicated to offline storage).

It is further important to note that DigitalOcean VMs in recovery mode apparently must use the one ISO image provided by
DigitalOcean. At the time of this writing it was based on Ubuntu 18.04 LTS with ZFS support — so the ZFS pools and datasets
on VMs that use them should be created AND kept with options supported by that version of the filesystem implementation.

Another note regards pricing: resources that "exist" are billed, whether they run or not (e.g. turned-off VMs still reserve
CPU/RAM to be able to run on demand, dormant storage for custom images is used even if they are not active filesystems,
etc.)

As of this writing, the hourly prices are applied for resources spawned and destroyed within a calendar month. After a monthly-
rate total price for the item is reached, that is applied instead.

OS images

Some links will be in OS-specific chapters below; further reading for this effort included:

• https://www.digitalocean.com/blog/custom-images

• https://ptribble.blogspot.com/2021/04/running-tribblix-on-digital-ocean.html — notes on custom image creation, may involve
https://github.com/illumos/metadata-agent

• https://bsd-cloud-image.org/ — A collection of pre-built *BSD cloud images

https://www.digitalocean.com/?refcode=d2fbf2b9e082&utm_campaign=Referral_Invite&utm_medium=Referral_Program&utm_source=badge
https://www.jenkins.io/
https://www.digitalocean.com/blog/custom-images
https://ptribble.blogspot.com/2021/04/running-tribblix-on-digital-ocean.html
https://github.com/illumos/metadata-agent
https://bsd-cloud-image.org/

NUT Quality Assurance and Build Automation Guide 12 / 59

According to the fine print in the scary official docs, DigitalOcean VMs can only use "custom images" in one of a number of
virtual HDD formats, which should carry an ext3/ext4 filesystem for DigitalOcean addons to barge into for management.

In practice, uploading other images (OpenIndiana Hipster "cloud" image, OmniOS, FreeBSD) from your workstation or by
providing an URL to an image file on the Internet (see links in this document for some collections) sort of works. While the
upload status remained "pending", a VM could often be made with it soon. . . but in other cases you have to wait a surprisingly
long time, some 15-20 minutes, and additional images suddenly become "Uploaded".

• The initial theory was that we exceeded some limit and after ending the setups with one custom image, it can be nuked and
then another used in its place; in practice this seems to be not true — just the storage information refresh (perhaps propagation
from cache to committed) can lag.

• Note that your budget would be invoiced for storage of custom images too. If you use stock ISOs once, it makes sense to
remove them later.

• There is also an option to use pre-installed operating systems, so you can dynamically create and destroy VMs with minimal
work after creation (e.g. with Jenkins cloud plugins to spawn workers according to labels); in this case you may want to retain
(eventually update) the golden image.

• It may be that not all non-standard images are supported, but those with cloud-init or similar tools (see https://www.digitalocean.com/-
blog/custom-images for details).

Networking

FIXME: Private net, DO-given IPs

One limitation seen with "custom images" is that IPv6 is not offered to those VMs.

Generally all VMs get random (hopefully persistent) public IPv4 addresses from various subnets. It is possible to also request an
interconnect VLAN for one project’s VMs co-located in same data center and have it attached (with virtual IP addresses) to an
additional network interface on each of your VMs: it is supposed to be faster and free (regarding traffic quotas).

• For the Jenkins controller which talks to the world (and enjoys an off-hosting backup at a maintainer’s home server) having
substantial monthly traffic quota is important.

• For the set of builders hosted on DigitalOcean, which would primarily talk to the controller in the common VLAN — not so
much (just OS upgrades? maybe GitHub?)

One more potential caveat: while DigitalOcean provides VPC network segments for free inter-communications of a group of
droplets, it assigns IP addresses to those and does not let any others be used by the guest. This causes some hassle when
importing a set of VMs which used different IP addresses on their inter-communications VLAN originally (on another hosting).

Common notes for illumos VMs

The original OpenIndiana Hipster and OmniOS VMs were configured with the https://github.com/jimklimov/illumos-splitroot-
scripts methodology and scripting, so there are quite a few datasets dedicated to their purposes instead of a large one.

There are known issues about VM reboot:

• Per https://www.illumos.org/issues/14526 and personal and community practice, it seems that "slow reboot" for illumos VMs
on QEMU-6.x (and on DigitalOcean) misbehaves and hangs, ultimately the virtual hardware is not power-cycled.

• A power-off/on cycle through UI (and probably REST API) does work.

• It took about 2 hours for rebooting... to take place in fact. At least, the machine would not be stuck for eternity in case
of unattended crashes.

• Other kernels (Linux, BSD, . . .) are not impacted by this, it seems.

Wondering if there are QEMU HW watchdogs on DigitalOcean that we could use. . .

https://www.digitalocean.com/blog/custom-images
https://www.digitalocean.com/blog/custom-images
https://github.com/jimklimov/illumos-splitroot-scripts
https://github.com/jimklimov/illumos-splitroot-scripts
https://www.illumos.org/issues/14526

NUT Quality Assurance and Build Automation Guide 13 / 59

5.2.2 Using the DigitalOcean Recovery ISO

As noted above, for installation and subsequent management DigitalOcean’s recovery ISO must be used when booting the VM,
which is based on Ubuntu and includes ZFS support. It was used a lot both initially and over the years, so deserves a dedicated
chapter.

To boot into the recovery environment, you should power off the VM (see the Power left-menu item in DigitalOcean web
dashboard, and "Turn off Droplet"), then go into the Recovery menu and select "Boot from Recovery ISO" and power on the
Droplet. When you are finished with recovery mode operations, repeat this routine but select "Boot from Hard Drive" instead.

Note
Sometimes you might be able to change the boot device in advance (it takes time to apply the setting change) and power-cycle
the VM later.

The recovery live image allows to install APT packages, such as mc (file manager and editor) and mbuffer (to optimize
zfs-send/zfs-recv traffic). When the image boots, it offers a menu which walks through adding SSH public keys (can
import ones from e.g. GitHub by username).

Note that if your client system uses screen, tmux or byobu, the new SSH connections would get the menu again. To get
a shell right away, interactive or for scripting like rsync and zfs recv counterparts, you should export TERM=vt220
from your screen session (the latter proved useful in any case for independence of the long replication run from connectivity
of my laptop to Fosshost/DigitalOcean VMs).

• SSH keys can be imported with a ssh-import-id-gh helper script provided in the image:

#recovery# ssh-import-id-gh jimklimov
2023-12-10 21:32:18,069 INFO Already authorized ['2048',

'SHA256:Q/ouGDQn0HUZKVEIkHnC3c+POG1r03EVeRr81yP/TEoQ',
'jimklimov@github/10826393', '[RSA]']

...

• More can be pasted into ~/.ssh/authorized_keys later;

• The real SSH session is better than the (VNC-based web-wrapped) Rescue Console, which is much less responsive and also
lacks mouse and copy-paste integration with your browser;

• On your SSH client side (e.g. in the screen session on original VM which would send a lot of data), you can add non-default
(e.g. one-time) keys of the SSH server of the recovery environment with:

#origin# eval `ssh-agent`
#origin# ssh-add ~/.ssh/id_rsa_custom_key

Make the recovery userland convenient:

#recovery# apt install mc mbuffer

• mc, mcview and mcedit are just very convenient to manage systems and to manipulate files;

• ZFS send/receive traffic is quite bursty, with long quiet times as it investigates the source or target pools respectively, and busy
streaming times with data.

Using an mbuffer on at least one side (ideally both to smooth out network latency) is recommended to have something useful
happen when at least one of the sides has the bulk data streaming phase.

5.2.3 OpenIndiana

Helpful links for this part of the quest:

• https://openindiana.org/downloads/⇒ see https://dlc.openindiana.org/isos/hipster/20231027/OI-hipster-cloudimage.img.gz —
OI distro-provided cloud images (detailed at https://www.openindiana.org/announcements/openindiana-hipster-2023-04-announcement/-
release notes, though not at later ones)

https://openindiana.org/downloads/
https://dlc.openindiana.org/isos/hipster/20231027/OI-hipster-cloudimage.img.gz
https://www.openindiana.org/announcements/openindiana-hipster-2023-04-announcement/
https://www.openindiana.org/announcements/openindiana-hipster-2023-04-announcement/

NUT Quality Assurance and Build Automation Guide 14 / 59

DO-NUT-CI-OI VM creation

Initial attempt, using the OpenIndiana cloud image ISO:

The OI image could be loaded. . . but that’s it — the logo is visible on the DigitalOcean Recovery Console, as well as some early
boot-loader lines ending with a list of supported consoles. I assume it went into the ttya (serial) console as one is present in
the hardware list, but DigitalOcean UI does not make it accessible and I did not find quickly if there are any REST API or SSH
tunnel into serial ports.

Note
The web console did not come up quickly enough after a VM (re-)boot for any interaction with the early seconds of ISO image
loader’s uptime, if it even offers any.

It probably booted and auto-installed, since I could see an rpool/swap twice the size of VM RAM later on, and the rpool
occupied the whole VM disk (created with auto-sizing).

The VM can however be rebooted with a (DO-provided) Recovery ISO, based at that time on Ubuntu 18.04 LTS with ZFS support
— which was sufficient to send over the existing VM contents from original OI VM on Fosshost. See above about booting and
preparing that environment.

DO-NUT-CI-OI VM OS transfer

As the practically useful VM already existed at Fosshost.org, and a quick shot failed at making a new one from scratch, in order
to only transfer local zones (containers), a decision was made to transfer the whole ZFS pool via snapshots using the Recovery
ISO.

First, following up from the first experiment above: I can import the ZFS pool created by cloud-OI image into the Linux Recovery
CD session:

• Check known pools:

#recovery# zpool import
pool: rpool

id: 7186602345686254327
state: ONLINE

status: The pool was last accessed by another system.
action: The pool can be imported using its name or numeric identifier and the `-f' flag.

see: http://zfsonlinux.org/msg/ZFS-8000-EY
config:

rpool ONLINE
vda ONLINE

• Import without mounting (-N), using an alternate root if we decide to mount something later (-R /a), and ignoring possible
markers that the pool was not unmounted so might be used by another storage user (-f):

#recovery# zpool import -R /a -N -f rpool

• List what we see here:

#recovery# zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 34.1G 276G 204K /rpool
rpool/ROOT 1.13G 276G 184K legacy
rpool/ROOT/c936500e 1.13G 276G 1.13G legacy
rpool/export 384K 276G 200K /export
rpool/export/home 184K 276G 184K /export/home
rpool/swap 33.0G 309G 104K -

NUT Quality Assurance and Build Automation Guide 15 / 59

The import and subsequent inspection above showed that the kernel core-dump area was missing, compared to the original VM. . .
so adding per best practice:

• Check settings wanted by the installed machine for the rpool/dump dataset:

#origin# zfs get -s local all rpool/dump
NAME PROPERTY VALUE SOURCE
rpool/dump volsize 1.46G local
rpool/dump checksum off local
rpool/dump compression off local
rpool/dump refreservation none local
rpool/dump dedup off local

• Apply to the new VM:

#recovery# zfs create -V 2G -o checksum=off -o compression=off \
-o refreservation=none -o dedup=off rpool/dump

To receive ZFS streams from the running OI into the freshly prepared cloud-OI image, it wanted the ZFS features to be enabled
(all were disabled by default) since some are used in the replication stream:

• Check what is there initially (on the new VM):

#recovery# zpool get all
NAME PROPERTY VALUE SOURCE
rpool size 320G -
rpool capacity 0% -
rpool altroot - default
rpool health ONLINE -
rpool guid 7186602345686254327 -
rpool version - default
rpool bootfs rpool/ROOT/c936500e local
rpool delegation on default
rpool autoreplace off default
rpool cachefile - default
rpool failmode wait default
rpool listsnapshots off default
rpool autoexpand off default
rpool dedupditto 0 default
rpool dedupratio 1.00x -
rpool free 318G -
rpool allocated 1.13G -
rpool readonly off -
rpool ashift 12 local
rpool comment - default
rpool expandsize - -
rpool freeing 0 -
rpool fragmentation - -
rpool leaked 0 -
rpool multihost off default
rpool feature@async_destroy disabled local
rpool feature@empty_bpobj disabled local
rpool feature@lz4_compress disabled local
rpool feature@multi_vdev_crash_dump disabled local
rpool feature@spacemap_histogram disabled local
rpool feature@enabled_txg disabled local
rpool feature@hole_birth disabled local
rpool feature@extensible_dataset disabled local
rpool feature@embedded_data disabled local
rpool feature@bookmarks disabled local
rpool feature@filesystem_limits disabled local

NUT Quality Assurance and Build Automation Guide 16 / 59

rpool feature@large_blocks disabled local
rpool feature@large_dnode disabled local
rpool feature@sha512 disabled local
rpool feature@skein disabled local
rpool feature@edonr disabled local
rpool feature@userobj_accounting disabled local

• Enable all features this pool knows about (list depends on both ZFS module versions which created the pool and which are
running now):

#recovery# zpool get all | grep feature@ | awk '{print $2}' | \
while read F ; do zpool set $F=enabled rpool ; done

On the original VM, stop any automatic snapshot services like ZnapZend or zfs-auto-snapshot, and manually snapshot all
datasets recursively so that whole data trees can be easily sent over (note that we then remove some snaps like for swap/dump
areas which otherwise waste a lot of space over time with blocks of obsolete swap data held by the pool for possible dataset
rollback):

#origin# zfs snapshot -r rpool@20231210-01
#origin# zfs destroy rpool/swap@20231210-01&
#origin# zfs destroy rpool/dump@20231210-01&

On the receiving VM, move existing cloudy rpool/ROOT out of the way, if we would not use it anyway, so the new one from the
original VM can land (for kicks, we can zfs rename the cloud-image’s boot environment back into the fold after replication
is complete). Also prepare to maximally compress the received root filesystem data, so it does not occupy too much in the new
home (this is not something we write too often, so slower gzip-9 writes can be tolerated):

#recovery# zfs rename rpool/ROOT{,x} ; \
while ! zfs set compression=gzip-9 rpool/ROOT ; do sleep 0.2 || break ; done

Send over the data (from the prepared screen session on the origin server); first make sure all options are correct while using a
dry-run mode, e.g.:

Do not let other work of the origin server preempt the replication
#origin# renice -n -20 $$

#origin# zfs send -Lce -R rpool/ROOT@20231210-01 | mbuffer | \
ssh root@recovery "mbuffer | zfs recv -vFnd rpool"

• Then remove -n from zfs recv after initial experiments confirm it would receive what you want and where you want it,
and re-run.

With sufficiently large machines and slow source hosting, expect some hours for the transfer.

• I saw 4-8Mb/s in the streaming phase for large increments, and quite a bit of quiet time during enumeration of even almost-
empty regular snapshots made by ZnapZend — low-level work with ZFS metadata has a cost.

Note that one of the benefits of ZFS (and the non-automatic snapshots used here) is that it is easy to catch-up later to send the
data which the original server would generate and write during the replication. You can keep it actually working until the last
minutes of the migration.

After the large initial transfers complete, follow-up with a pass to stop the original services (e.g. whole zones either from OS
default grouping or as wrapped by https://github.com/jimklimov/illumos-smf-zones scripting) and replicate any new information
created on origin server during this transfer (and/or human outage for the time it would take you to focus on this task again, after
the computers were busy for many hours. . .)

https://www.znapzend.org
https://www.znapzend.org
https://github.com/jimklimov/illumos-smf-zones

NUT Quality Assurance and Build Automation Guide 17 / 59

Note
The original VM had ZnapZend managing regular ZFS snapshots and their off-site backups. As the old machine would no
longer be doing anything of consequence, keep the service there disable and also turn off the tunnel to off-site backup — this
serves to not confuse your remote systems as an admin. The new VM clone would just resume the same snapshot history,
poured to the same off-site backup target.

• rsync the rpool/boot/ from old machine to new, which is a directory right in the rpool dataset and has boot-loader
configs; update menu.lst for GRUB boot-loader settings;

• run zpool set bootfs=... to enable the transplanted root file system;

• touch reconfigure in the new rootfs (to pick up changed hardware on boot);

• be ready to fiddle with /etc/dladm/datalink.conf (if using virtual links, etherstubs, etc.), as well as /etc/hostname*,
/etc/defaultrouter etc.

• revise the loader settings regarding the console to use (should be text first here on DigitalOcean) — see in /boot/solaris/bootenv.rc
and/or /boot/defaults/loader.conf

• reboot into production mode to see if it all actually "works" :)

If the new VM does boot correctly, log into it and:

• Revive the znapzend retention schedules: they have a configuration source value of received in ZFS properties of the
replica, so are ignored by the tool. See znapzendzetup list on the original machine to get a list of datasets to check on
the replica, e.g.:

:; zfs get -s received all rpool/{ROOT,export,export/home/abuild/.ccache,zones{,-nosnap}} ←↩
\
| grep znapzend | while read P K V S ; do zfs set $K="$V" $P & done

• re-enable znapzend and zones SMF services on the new VM;

• check about cloud-init integration services; the metadata-agent seems buildable and installable, it logged the SSH
keys on console after service manifest import (details elaborated in links above).

DO-NUT-CI-OI VM preparation as build agent

As of this writing, the NUT CI Jenkins controller runs on DigitalOcean — and feels a lot snappier in browsing and SSH manage-
ment than the older Fosshost.org VMs. Despite the official demise of the platform, they were alive and used as build agents for
the newly re-hosted Jenkins controller for over a year until somebody or something put them to rest: the container with the old
production Jenkins controller was set to not-auto-booting, and container with worker was attached to the new controller.

The Jenkins SSH Build Agent setups involved here were copied on the controller (as XML files) and then updated to tap into the
different "host" and "port" (so that the original definitions can in time be used for replicas on DO), and due to trust settings —
the ~jenkins/.ssh/known_hosts file on the new controller had to be updated with the "new" remote system fingerprints.
Otherwise, the migration went smooth.

Similarly, existing Jenkins swarm agents from community PCs had to be taught the new DNS name (some had it in /etc/hosts),
but otherwise connected OK.

5.2.4 OmniOS

Helpful links for this part of the quest:

• https://omnios.org/download⇒ see https://downloads.omnios.org/media/lts/omnios-r151046.cloud.vmdk (LTS) or https://downloads.omnios.org/-
media/stable/omnios-r151048.cloud.vmdk (recent stable) or daily "bloody" images like https://downloads.omnios.org/media/-
bloody/omnios-bloody-20231209.cloud.vmdk

https://omnios.org/download
https://downloads.omnios.org/media/lts/omnios-r151046.cloud.vmdk
https://downloads.omnios.org/media/stable/omnios-r151048.cloud.vmdk
https://downloads.omnios.org/media/stable/omnios-r151048.cloud.vmdk
https://downloads.omnios.org/media/bloody/omnios-bloody-20231209.cloud.vmdk
https://downloads.omnios.org/media/bloody/omnios-bloody-20231209.cloud.vmdk

NUT Quality Assurance and Build Automation Guide 18 / 59

DO-NUT-CI-OO VM preparation

Added replicas of more existing VMs: OmniOS (relatively straightforward with the OI image).

The original OmniOS VM used ZFS, so its contents were sent-received similarly to the OI VM explained above.

5.2.5 FreeBSD

Helpful links for this part of the quest:

• https://www.adminbyaccident.com/freebsd/how-to-upload-a-freebsd-custom-image-on-digitalocean/

DO-NUT-CI-FREEBSD VM preparation

Added replicas of more existing VMs: FreeBSD 12 (needed to use a seed image, tried an OpenIndiana image first but did not cut
it — the ZFS options in its rpool were too new, so the older build of the BSD loader was not too eager to find the pool).

The original FreeBSD VM used ZFS, so its contents were sent-received similarly to the OI VM explained above.

• The (older version of?) FreeBSD loader rejected a gzip-9 compressed zroot/ROOT location, so care had to be taken to
first disable compression (only on the original system’s tree of root filesystem datasets). The last applied ZFS properties are
used for the replication stream.

5.2.6 OpenBSD

Helpful links for this part of the quest:

• https://dev.to/nabbisen/custom-openbsd-droplet-on-digitalocean-4a9o — how to piggyback OpenBSD via FreeBSD images
(no longer offered by default on DO)

DO-NUT-CI-OPENBSD VM creation

Added a replica of OpenBSD 6.5 VM as an example of relatively dated system in the CI farm, which went decently well as a dd
stream of the local VM’s vHDD into DO recovery console session:

#tgt-recovery# mbuffer -4 -I 12340 > /dev/vda

#src# dd if=/dev/rsd0c | time nc myHostingIP 12340

. . . followed by a reboot and subsequent adaptation of /etc/myname and /etc/hostname.vio* files.

I did not check if the DigitalOcean recovery image can directly mount BSD UFS partitions, as it sufficed to log into the pre-
configured system.

One caveat was that it was originally installed with X11, but DigitalOcean web-console did not pass through the mouse nor
advanced keyboard shortcuts. So rcctl disable xenodm (to reduce the attack surface and resource waste).

FWIW, openbsd-7.3-2023-04-22.qcow2 "custom image" did not seem to boot. At least, no activity on display and the
IP address did not go up.

5.2.7 Linux

Helpful links for this part of the quest:

• https://openzfs.github.io/openzfs-docs/Getting%20Started/Debian/Debian%20Bookworm%20Root%20on%20ZFS.html — first
steps for moving our older Linux VM onto ZFS root

https://www.adminbyaccident.com/freebsd/how-to-upload-a-freebsd-custom-image-on-digitalocean/
https://dev.to/nabbisen/custom-openbsd-droplet-on-digitalocean-4a9o
https://openzfs.github.io/openzfs-docs/Getting%20Started/Debian/Debian%20Bookworm%20Root%20on%20ZFS.html

NUT Quality Assurance and Build Automation Guide 19 / 59

DO-NUT-CI-LINUX VM creation

Spinning up the Debian-based Linux builder (with many containers for various Linux systems) with ZFS, to be consistent across
the board, was an adventure.

• DigitalOcean rescue CD is Ubuntu 18.04 based, it has an older ZFS version so instructions from https://openzfs.github.io/-
openzfs-docs/Getting%20Started/Debian/Debian%20Stretch%20Root%20on%20ZFS.html have to be used particularly to zpool
create bpool (with the dumbed-down options for GRUB to be able to read that boot-pool);

• For the rest of the system, https://openzfs.github.io/openzfs-docs/Getting%20Started/Debian/Debian%20Bookworm%20Root%20on%20ZFS.html
is relevant for current distro (Debian 12) and is well-written;

• Note that while in many portions the "MBR or (U)EFI" boot is a choice of either one command to copy-paste or another,
the spot about installing GRUB actually requires both (MBR for disk to be generally bootable, and EFI to proceed with that
implementation);

• If the (recovery) console with the final OS is too "tall" in the Web-UI, so the lower rows are hidden by the DO banner with IP
address, and you can’t see the commands you are typing, try clear ; stty size to check the current display size (was
128x48 for me) and stty rows 45 to reduce it a bit. Running a full-screen program like mc helps gauge if you got it right.

DO-NUT-CI-LINUX VM OS transfer

After the root pool was prepared and the large tree of datasets defined to handle the numerous LXC containers, abuild home
directory, and other important locations of the original system, rsync -avPHK worked well to transfer the data.

DO-NUT-CI-LINUX VM preparation as build agent

Numerous containers with an array of Linux distributions are used as either Jenkins SSH build agents or swarm agents, as
documented in chapters about LXC containers.

5.3 Custom NUT CI farm build agents: LXC multi-arch containers

This section details configuration of LXC containers as build environments for NUT CI farm; this approach can also be used on
developer workstations.

5.4 Setting up the multi-arch Linux LXC container farm for NUT CI

Due to some historical reasons including earlier personal experience, the Linux container setup implemented as described below
was done with persistent LXC containers wrapped by LIBVIRT for management. There was no particular use-case for systems
like Docker (and no firepower for a Kubernetes cluster) in that the build environment intended for testing non-regression against
a certain release does not need to be regularly updated — its purpose is to be stale and represent what users still running that
system for whatever reason (e.g. embedded, IoT, corporate) have in their environments.

5.4.1 Common preparations

• Example list of packages for Debian-based systems may include (not necessarily is limited to):

:; apt install lxc lxcfs lxc-templates \
ipxe-qemu qemu-kvm qemu-system-common qemu-system-data \
qemu-system-sparc qemu-system-x86 qemu-user-static qemu-utils \
virt-manager virt-viewer virtinst ovmf \
libvirt-daemon-system-systemd libvirt-daemon-system \
libvirt-daemon-driver-lxc libvirt-daemon-driver-qemu \
libvirt-daemon-config-network libvirt-daemon-config-nwfilter \
libvirt-daemon libvirt-clients

https://openzfs.github.io/openzfs-docs/Getting%20Started/Debian/Debian%20Stretch%20Root%20on%20ZFS.html
https://openzfs.github.io/openzfs-docs/Getting%20Started/Debian/Debian%20Stretch%20Root%20on%20ZFS.html
https://openzfs.github.io/openzfs-docs/Getting%20Started/Debian/Debian%20Bookworm%20Root%20on%20ZFS.html

NUT Quality Assurance and Build Automation Guide 20 / 59

TODO: Where to find virt-top - present in some but not all releases?
Can fetch sources from https://packages.debian.org/sid/virt-top and follow
https://www.linuxfordevices.com/tutorials/debian/build-packages-from-source
Be sure to use 1.0.x versions, since 1.1.x uses a "better-optimized API"
which is not implemented by libvirt/LXC backend.

Note
This claims a footprint of over a gigabyte of new packages when unpacked and installed to a minimally prepared OS. Much
of that would be the graphical environment dependencies required by several engines and tools.

• Prepare LXC and LIBVIRT-LXC integration, including an "independent" (aka "masqueraded) bridge for NAT, following
https://wiki.debian.org/LXC and https://wiki.debian.org/LXC/SimpleBridge

– For dnsmasq integration on the independent bridge (lxcbr0 following the documentation examples), be sure to mention:

* LXC_DHCP_CONFILE="/etc/lxc/dnsmasq.conf" in /etc/default/lxc-net

* dhcp-hostsfile=/etc/lxc/dnsmasq-hosts.conf in/as the content of /etc/lxc/dnsmasq.conf

* touch /etc/lxc/dnsmasq-hosts.conf which would list simple name,IP pairs, one per line (so one per con-
tainer)

* systemctl restart lxc-net to apply config (is this needed after setup of containers too, to apply new items
before booting them?)

* For troubleshooting, see /var/lib/misc/dnsmasq.lxcbr0.leases (in some cases you may have to rename it
away and reboot host to fix IP address delegation)

• Install qemu with its /usr/bin/qemu-*-static and registration in /var/lib/binfmt

• Prepare an LVM partition (or preferably some other tech like ZFS) as /srv/libvirt and create a /srv/libvirt/rootfs
to hold the containers

• Prepare /home/abuild on the host system (preferably in ZFS with lightweight compression like lz4 — and optionally, only
if the amount of available system RAM permits, with deduplication; otherwise avoid it); account user and group ID numbers
are 399 as on the rest of the CI farm (historically, inherited from OBS workers)

– It may help to generate an ssh key without a passphrase for abuild that it would trust, to sub-login from CI agent sessions
into the container. Then again, it may be not required if CI logs into the host by SSH using authorized_keys and an
SSH Agent, and the inner ssh client would forward that auth channel to the original agent.

abuild$ ssh-keygen
accept defaults

abuild$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
abuild$ chmod 640 ~/.ssh/authorized_keys

• Edit the root (or whoever manages libvirt) ~/.profile to default the virsh provider with:

LIBVIRT_DEFAULT_URI=lxc:///system
export LIBVIRT_DEFAULT_URI

• If host root filesystem is small, relocate the LXC download cache to the (larger) /srv/libvirt partition:

:; mkdir -p /srv/libvirt/cache-lxc
:; rm -rf /var/cache/lxc
:; ln -sfr /srv/libvirt/cache-lxc /var/cache/lxc

– Maybe similarly relocate shared /home/abuild to reduce strain on rootfs?

https://wiki.debian.org/LXC
https://wiki.debian.org/LXC/SimpleBridge

NUT Quality Assurance and Build Automation Guide 21 / 59

5.4.2 Setup a container

Note that completeness of qemu CPU emulation varies, so not all distros can be installed, e.g. "s390x" failed for both debian10
and debian11 to set up the openssh-server package, or once even to run /bin/true (seems to have installed an older
release though, to match the outdated emulation?)

While the lxc-create tool does not really specify the error cause and deletes the directories after failure, it shows the pathname
where it writes the log (also deleted). Before re-trying the container creation, this file can be watched with e.g. tail -F
/var/cache/lxc/.../debootstrap.log

Note
You can find the list of LXC "template" definitions on your system by looking at the contents of the
/usr/share/lxc/templates/ directory, e.g. a script named lxc-debian for the "debian" template. You can see
further options for each "template" by invoking its help action, e.g.:

:; lxc-create -t debian -h

Initial container installation (for various guest OSes)

• Install containers like this:

:; lxc-create -P /srv/libvirt/rootfs \
-n jenkins-debian11-mips64el -t debian -- \
-r bullseye -a mips64el

– to specify a particular mirror (not everyone hosts everything — so if you get something like "E: Invalid Release
file, no entry for main/binary-mips/Packages" then see https://www.debian.org/mirror/list for details,
and double-check the chosen site to verify if the distro version of choice is hosted with your arch of choice):

:; MIRROR="http://ftp.br.debian.org/debian/" \
lxc-create -P /srv/libvirt/rootfs \
-n jenkins-debian10-mips -t debian -- \
-r buster -a mips

– . . . or for EOLed distros, use the Debian Archive server.

* Install the container with Debian Archive as the mirror like this:

:; MIRROR="http://archive.debian.org/debian-archive/debian/" \
lxc-create -P /srv/libvirt/rootfs \
-n jenkins-debian8-s390x -t debian -- \
-r jessie -a s390x

* Note you may have to add trust to their (now expired) GPG keys for packaging to verify signatures made at the time the key
was valid, by un-symlinking (if appropriate) the debootstrap script such as /usr/share/debootstrap/scripts/jessie,
commenting away the keyring /usr/share/keyrings/debian-archive-keyring.gpg line and setting
keyring /usr/share/keyrings/debian-archive-removed-keys.gpg instead. You may further have
to edit /usr/share/debootstrap/functions and/or /usr/share/lxc/templates/lxc-debian to honor
that setting (the releasekeyring was hard-coded in version I had installed), e.g. in the latter file ensure such logic as
below, and re-run the installation:

...
If debian-archive-keyring isn't installed, fetch GPG keys directly
releasekeyring="`grep -E '^keyring ' "/usr/share/debootstrap/scripts/$release" | ←↩

sed -e 's,^keyring ,,' -e 's,[#].*$,,'`" 2>/dev/null
if [-z $releasekeyring]; then

releasekeyring=/usr/share/keyrings/debian-archive-keyring.gpg
fi
if [! -f $releasekeyring]; then

...

https://www.debian.org/mirror/list

NUT Quality Assurance and Build Automation Guide 22 / 59

– . . . Alternatively, other distributions can be used (as supported by your LXC scripts, typically in /usr/share/debootstrap/scripts),
e.g. Ubuntu:

:; lxc-create -P /srv/libvirt/rootfs \
-n jenkins-ubuntu1804-s390x -t ubuntu -- \
-r bionic -a s390x

– For distributions with a different packaging mechanism from that on the LXC host system, you may need to install corre-
sponding tools (e.g. yum4, rpm and dnf on Debian hosts for installing CentOS and related guests). You may also need
to pepper with symlinks to taste (e.g. yum => yum4), or find a pacman build to install Arch Linux or derivative, etc.
Otherwise, you risk seeing something like this:

root@debian:~# lxc-create -P /srv/libvirt/rootfs \
-n jenkins-centos7-x86-64 -t centos -- \
-R 7 -a x86_64

Host CPE ID from /etc/os-release:
'yum' command is missing
lxc-create: jenkins-centos7-x86-64: lxccontainer.c:

create_run_template: 1616 Failed to create container from template
lxc-create: jenkins-centos7-x86-64: tools/lxc_create.c:

main: 319 Failed to create container jenkins-centos7-x86-64

Note also that with such "third-party" distributions you may face other issues; for example, the CentOS helper did not
generate some fields in the config file that were needed for conversion into libvirt "domxml" (as found by trial and error,
and comparison to other config files):

lxc.uts.name = jenkins-centos7-x86-64
lxc.arch = x86_64

Also note the container/system naming without underscore in "x86_64" — the deployed system discards the character when
assigning its hostname. Using "amd64" is another reasonable choice here.

– For Arch Linux you would need pacman tools on the host system, so see https://wiki.archlinux.org/title/Install_Arch_Linux_from_existing_Linux#Using_pacman_from_the_host_system
for details. On a Debian/Ubuntu host, assumed ready for NUT builds per Prerequisites for building NUT on different OSes
(or docs/config-prereqs.txt in NUT sources for up-to-date information), it would start like this:

:; apt-get update
:; apt-get install meson ninja-build cmake

Some dependencies for pacman itself; note there are several libcurl builds;
pick another if your system constraints require you to:
:; apt-get install libarchive-dev libcurl4-nss-dev gpg libgpgme-dev

:; git clone https://gitlab.archlinux.org/pacman/pacman.git
:; cd pacman

Iterate something like this until all needed dependencies fall
into line (note libdir for your host architecture):
:; rm -rf build; mkdir build && meson build --libdir=/usr/lib/x86_64-linux-gnu

:; ninja -C build
Depending on your asciidoc version, it may require that `--asciidoc-opts` are
passed as equation to a vale (not space-separated from it). Then apply this:
diff --git a/doc/meson.build b/doc/meson.build
- '--asciidoc-opts', ' '.join(asciidoc_opts),
+ '--asciidoc-opts='+' '.join(asciidoc_opts),
and re-run (meson and) ninja.

Finally when all succeeded:
:; sudo ninja -C build install
:; cd

https://wiki.archlinux.org/title/Install_Arch_Linux_from_existing_Linux#Using_pacman_from_the_host_system

NUT Quality Assurance and Build Automation Guide 23 / 59

You will also need pacstrap and Debian arch-install-scripts package does not deliver it. It is however simply
achieved:

:; git clone https://github.com/archlinux/arch-install-scripts
:; cd arch-install-scripts
:; make && sudo make PREFIX=/usr install
:; cd

It will also want an /etc/pacman.d/mirrorlistwhich you can populate for your geographic location from https://archlinux.org/-
mirrorlist/ service, or just fetch them all (don’t forget to uncomment some Server = lines):

:; mkdir -p /etc/pacman.d/
:; curl https://archlinux.org/mirrorlist/all/ > /etc/pacman.d/mirrorlist

And to reference it from your host /etc/pacman.conf by un-commenting the [core] section and Include instruc-
tion, as well as adding [community] and [extra] sections with same reference, e.g.:

[core]
SigLevel = Never
SigLevel = PackageRequired
Include = /etc/pacman.d/mirrorlist

[extra]
SigLevel = Never
SigLevel = PackageRequired
Include = /etc/pacman.d/mirrorlist

[community]
SigLevel = Never
SigLevel = PackageRequired
Include = /etc/pacman.d/mirrorlist

And just then you can proceed with LXC:

:; lxc-create -P /srv/libvirt/rootfs \
-n jenkins-archlinux-amd64 -t archlinux -- \
-a x86_64 -P openssh,sudo

In my case, it had problems with GPG keyring missing (using one in host system, as well as the package cache outside
the container, it seems) so I had to run pacman-key --init; pacman-key --refresh-keys on the host itself.
Even so, lxc-create complained about updating some keyring entries and I had to go one by one picking key servers
(serving different metadata) like this:

:; pacman-key --keyserver keyserver.ubuntu.com --recv-key 6D1655C14CE1C13E

In the worst case, see SigLevel = Never for pacman.conf to not check package integrity (seems too tied into
thinking that host OS is Arch). . .
It seems that pre-fetching the package databases with pacman -Sy on the host was also important.

Initial container-related setup

• Add the "name,IP" line for this container to /etc/lxc/dnsmasq-hosts.conf on the host, e.g.:

jenkins-debian11-mips,10.0.3.245

Note
Don’t forget to eventually systemctl restart lxc-net to apply the new host reservation!

• Convert a pure LXC container to be managed by LIBVIRT-LXC (and edit config markup on the fly — e.g. fix the LXC dir:/
URL schema):

https://archlinux.org/mirrorlist/
https://archlinux.org/mirrorlist/

NUT Quality Assurance and Build Automation Guide 24 / 59

:; virsh -c lxc:///system domxml-from-native lxc-tools \
/srv/libvirt/rootfs/jenkins-debian11-armhf/config \
| sed -e 's,dir:/srv,/srv,' \
> /tmp/x && virsh define /tmp/x

Note
You may want to tune the default generic 64MB RAM allocation, so your launched QEMU containers are not OOM-killed
as they exceeded their memory cgroup limit. In practice they do not eat that much resident memory, just want to have
it addressable by VMM, I guess (swap is not very used either), at least not until active builds start (and then it depends on
compiler appetite and make program parallelism level you allow, e.g. by pre-exporting MAXPARMAKES environment variable
for ci_build.sh, and on the number of Jenkins "executors" assigned to the build agent).

– It may be needed to revert the generated "os/arch" to x86_64 (and let QEMU handle the rest) in the /tmp/x file, and re-try
the definition:

:; virsh define /tmp/x

• Then execute virsh edit jenkins-debian11-armhf (and same for other containers) to bind-mount the common
/home/abuild location, adding this tag to their "devices":

<filesystem type='mount' accessmode='passthrough'>
<source dir='/home/abuild'/>
<target dir='/home/abuild'/>

</filesystem>

– Note that generated XML might not conform to current LXC schema, so it fails validation during save; this can be bypassed
with i when it asks. One such case was however with indeed invalid contents, the "dir:" schema removed by example above.

5.4.3 Shepherd the herd

• Monitor deployed container rootfs’es with:

:; du -ks /srv/libvirt/rootfs/*

(should have non-trivial size for deployments without fatal infant errors)

• Mass-edit/review libvirt configurations with:

:; virsh list --all | awk '{print $2}' \
| grep jenkins | while read X ; do \
virsh edit --skip-validate $X ; done

– . . . or avoid --skip-validate when markup is initially good :)

• Mass-define network interfaces:

:; virsh list --all | awk '{print $2}' \
| grep jenkins | while read X ; do \
virsh dumpxml "$X" | grep "bridge='lxcbr0'" \
|| virsh attach-interface --domain "$X" --config \

--type bridge --source lxcbr0 ; \
done

• Verify that unique MAC addresses were defined (e.g. 00:16:3e:00:00:01 tends to pop up often, while 52:54:00:xx:xx:xx
are assigned to other containers); edit the domain definitions to randomize, if needed:

NUT Quality Assurance and Build Automation Guide 25 / 59

:; grep 'mac add' /etc/libvirt/lxc/*.xml | awk '{print $NF" "$1}' | sort

• Make sure at least one console device exists (end of file, under the network interface definition tags), e.g.:

<console type='pty'>
<target type='lxc' port='0'/>

</console>

• Populate with abuild account, as well as with the bash shell and sudo ability, reporting of assigned IP addresses on
the console, and SSH server access complete with envvar passing from CI clients by virtue of ssh -o SendEnv=’*’
container-name:

:; for ALTROOT in /srv/libvirt/rootfs/*/rootfs/ ; do \
echo "=== $ALTROOT :" >&2; \
grep eth0 "$ALTROOT/etc/issue" || (printf '%s %s\n' \

'\S{NAME} \S{VERSION_ID} \n \l@\b ;' \
'Current IP(s): \4{eth0} \4{eth1} \4{eth2} \4{eth3}' \
>> "$ALTROOT/etc/issue") ; \

grep eth0 "$ALTROOT/etc/issue.net" || (printf '%s %s\n' \
'\S{NAME} \S{VERSION_ID} \n \l@\b ;' \
'Current IP(s): \4{eth0} \4{eth1} \4{eth2} \4{eth3}' \
>> "$ALTROOT/etc/issue.net") ; \

groupadd -R "$ALTROOT" -g 399 abuild ; \
useradd -R "$ALTROOT" -u 399 -g abuild -M -N -s /bin/bash abuild \
|| useradd -R "$ALTROOT" -u 399 -g 399 -M -N -s /bin/bash abuild \
|| { if ! grep -w abuild "$ALTROOT/etc/passwd" ; then \

echo 'abuild:x:399:399::/home/abuild:/bin/bash' \
>> "$ALTROOT/etc/passwd" ; \
echo "USERADDed manually: passwd" >&2 ; \

fi ; \
if ! grep -w abuild "$ALTROOT/etc/shadow" ; then \

echo 'abuild:!:18889:0:99999:7:::' >> "$ALTROOT/etc/shadow" ; \
echo "USERADDed manually: shadow" >&2 ; \

fi ; \
} ; \

if [-s "$ALTROOT/etc/ssh/sshd_config"]; then \
grep 'AcceptEnv *' "$ALTROOT/etc/ssh/sshd_config" || (\

(echo "" ; \
echo "# For CI: Allow passing any envvars:"; \
echo 'AcceptEnv *') \

>> "$ALTROOT/etc/ssh/sshd_config" \
) ; \

fi ; \
done

Note that for some reason, in some of those other-arch distros useradd fails to find the group anyway; then we have to
"manually" add them.

• Let the host know and resolve the names/IPs of containers you assigned:

:; grep -v '#' /etc/lxc/dnsmasq-hosts.conf \
| while IFS=, read N I ; do \
getent hosts "$N" >&2 || echo "$I $N" ; \

done >> /etc/hosts

5.4.4 Further setup of the containers

See Prerequisites for building NUT on different OSes (or docs/config-prereqs.txt in NUT sources for up-to-date
information) about dependency package installation for Debian-based Linux systems.

NUT Quality Assurance and Build Automation Guide 26 / 59

It may be wise to not install e.g. documentation generation tools (or at least not the full set for HTML/PDF generation) in each
environment, in order to conserve space and run-time stress.

Still, if there are significant version outliers (such as using an older distribution due to vCPU requirements), it can be installed
fully just to ensure non-regression — e.g. that when adapting Makefile rule definitions or compiler arguments to modern
toolkits, we do not lose the ability to build with older ones.

For this, chroot from the host system can be used, e.g. to improve the interactive usability for a population of Debian(-
compatible) containers (and to use its networking, while the operating environment in containers may be not yet configured or
still struggling to access the Internet):

:; for ALTROOT in /srv/libvirt/rootfs/*/rootfs/ ; do \
echo "=== $ALTROOT :" ; \
chroot "$ALTROOT" apt-get install \

sudo bash vim mc p7zip p7zip-full pigz pbzip2 git \
; done

Similarly for yum-managed systems (CentOS and relatives), though specific package names can differ, and additional package
repositories may need to be enabled first (see Prerequisites for building NUT on different OSes (or docs/config-prereqs.txt
in NUT sources for up-to-date information) for more details such as recommended package names).

Note that technically (sudo) chroot ... can also be used from the CI worker account on the host system to build in the
prepared filesystems without the overhead of running containers as complete operating environments with any standard services
and several copies of Jenkins agent.jar in them.

Also note that externally-driven set-up of some packages, including the ca-certificates and the JDK/JRE, require that the
/proc filesystem is usable in the chroot environment. This can be achieved with e.g.:

:; for ALTROOT in /srv/libvirt/rootfs/*/rootfs/ ; do \
for D in proc ; do \

echo "=== $ALTROOT/$D :" ; \
mkdir -p "$ALTROOT/$D" ; \
mount -o bind,rw "/$D" "$ALTROOT/$D" ; \

done ; \
done

TODO: Test and document a working NAT and firewall setup for this, to allow SSH access to the containers via dedicated TCP
ports exposed on the host.

Arch Linux containers

Arch Linux containers prepared by procedure above include only a minimal footprint, and if you missed the -P pkg,list
argument, they can lack even an SSH server. Suggestions below assume this path to container:

:; ALTROOT=/srv/libvirt/rootfs/jenkins-archlinux-amd64/rootfs/

Let pacman know current package database:

:; grep 8.8.8.8 $ALTROOT/etc/resolv.conf || (echo 'nameserver 8.8.8.8' > $ALTROOT/etc/ ←↩
resolv.conf)

:; chroot $ALTROOT pacman -Syu
:; chroot $ALTROOT pacman -S openssh sudo
:; chroot $ALTROOT systemctl enable sshd
:; chroot $ALTROOT systemctl start sshd

This may require that you perform bind-mounts above, as well as "passthrough" the /var/cache/pacman/pkg from host to
guest environment (in virsh edit, and bind-mount for chroot like for /proc et al above).

It is possible that virsh console would serve you better than chroot. Note you may have to first chroot to set the root
password anyhow.

NUT Quality Assurance and Build Automation Guide 27 / 59

5.4.5 Troubleshooting

• Q: Container won’t start, its virsh console says something like:

Failed to create symlink /sys/fs/cgroup/net_cls: Operation not permitted

A: According to https://bugzilla.redhat.com/show_bug.cgi?id=1770763 (skip to the end for summary) this can happen when
a newer Linux host system with cgroupsv2 capabilities runs an older guest distro which only knows about cgroupsv1,
such as when hosting a CentOS 7 container on a Debian 11 server.

– One workaround is to ensure that the guest systemd does not try to "join" host facilities, by setting an explicit empty list
for that:

:; echo 'JoinControllers=' >> "$ALTROOT/etc/systemd/system.conf"

– Another approach is to upgrade systemd related packages in the guest container. This may require additional "backport"
repositories or similar means, possibly maintained not by distribution itself but by other community members, and arguably
would logically compromise the idea of non-regression builds in the old environment "as is".

• Q: Server was set up with ZFS as recommended, and lots of I/O hit the disk even when application writes are negligible

A: This was seen on some servers and generally derives from data layout and how ZFS maintains the tree structure of blocks.
A small application write (such as a new log line) means a new empty data block allocation, an old block release, and bubble
up through the whole metadata tree to complete the transaction (grouped as TXG to flush to disk).

– One solution is to use discardable build workspaces in RAM-backed storage like /dev/shm (tmpfs) on Linux, or
/tmp (swap) on illumos hosting systems, and only use persistent storage for the home directory with .ccache and
.gitcache-dynamatrix directories.

– Another solution is to reduce the frequency of TXG sync from modern default of 5 sec to conservative 30-60 sec. Check
how to set the zfs_txg_timeout on your platform.

5.5 Connecting Jenkins to the containers

To properly cooperate with the jenkins-dynamatrix project driving regular NUT CI builds, each build environment should be
exposed as an individual agent with labels describing its capabilities.

5.5.1 Agent Labels

With the jenkins-dynamatrix, agent labels are used to calculate a large "slow build" matrix to cover numerous scenarios
for what can be tested with the current population of the CI farm, across operating systems, make, shell and compiler implemen-
tations and versions, and C/C++ language revisions, to name a few common "axes" involved.

Labels for QEMU

Emulated-CPU container builds are CPU-intensive, so for them we define as few capabilities as possible: here CI is more inter-
ested in checking how binaries behave on those CPUs, not in checking the quality of recipes (distcheck, Make implementations,
etc.), shell scripts or documentation, which is more efficient to test on native platforms.

Still, we are interested in results from different compiler suites, so specify at least one version of each.

Note
Currently the NUT Jenkinsfile-dynamatrix only looks at various COMPILER variants for qemu-nut-builder
use-cases, disregarding the versions and just using one that the environment defaults to.

The reduced set of labels for QEMU workers looks like:

https://bugzilla.redhat.com/show_bug.cgi?id=1770763
https://github.com/networkupstools/jenkins-dynamatrix

NUT Quality Assurance and Build Automation Guide 28 / 59

qemu-nut-builder qemu-nut-builder:alldrv
NUT_BUILD_CAPS=drivers:all NUT_BUILD_CAPS=cppunit
OS_FAMILY=linux OS_DISTRO=debian11 GCCVER=10 CLANGVER=11
COMPILER=GCC COMPILER=CLANG
ARCH64=ppc64le ARCH_BITS=64

Labels for native builds

For contrast, a "real" build agent’s set of labels, depending on presence or known lack of some capabilities, looks something like
this:

doc-builder nut-builder nut-builder:alldrv
NUT_BUILD_CAPS=docs:man NUT_BUILD_CAPS=docs:all
NUT_BUILD_CAPS=drivers:all NUT_BUILD_CAPS=cppunit=no
OS_FAMILY=bsd OS_DISTRO=freebsd12 GCCVER=10 CLANGVER=10
COMPILER=GCC COMPILER=CLANG
ARCH64=amd64 ARCH_BITS=64
SHELL_PROGS=sh SHELL_PROGS=dash SHELL_PROGS=zsh SHELL_PROGS=bash
SHELL_PROGS=csh SHELL_PROGS=tcsh SHELL_PROGS=busybox
MAKE=make MAKE=gmake
PYTHON=python2.7 PYTHON=python3.8

5.5.2 Generic agent attributes

• Name: e.g. ci-debian-altroot--jenkins-debian10-arm64 (note the pattern for "Conflicts With" detailed below)

• Remote root directory: preferably unique per agent, to avoid surprises; e.g.: /home/abuild/jenkins-nut-altroots/jenkins-debian10-armel

– Note it may help that the system home directory itself is shared between co-located containers, so that the .ccache or
.gitcache-dynamatrix are available to all builders with identical contents

– If RAM permits, the Jenkins Agent working directory may be placed in a temporary filesystem not backed by disk (e.g.
/dev/shm on modern Linux distributions); roughly estimate 300Mb per executor for NUT builds.

• Usage: "Only build jobs with label expressions matching this node"

• Node properties / Environment variables:

– PATH+LOCAL⇒ /usr/lib/ccache

5.5.3 Where to run agent.jar

Depending on circumstances of the container, there are several options available to the NUT CI farm:

• Java can run in the container, efficiently (native CPU, different distro)⇒ the container may be exposed as a standalone host for
direct SSH access (usually by NAT, exposing SSH on a dedicated port of the host; or by first connecting the Jenkins controller
with the host as an SSH Build Agent, and then calling SSH to the container as a prefix for running the agent; or by using
Jenkins Swarm agents), so ultimately the build agent.jar JVM would run in the container. Filesystem for the abuild
account may be or not be shared with the host.

• Java can not run in the container (crashes on emulated CPU, or is too old in the agent container’s distro — currently Jenkins
requires JRE 17+, but eventually will require 21+)⇒ the agent would run on the host, and then the host would ssh or chroot
(networking not required, but bind-mount of /home/abuild and maybe other paths from host would be needed) called for
executing sh steps in the container environment. Either way, home directory of the abuild account is maintained on the host
and shared with the guest environment, user and group IDs should match.

• Java is inefficient in the container (operations like un-stashing the source succeed but take minutes instead of seconds)⇒ either
of the above

NUT Quality Assurance and Build Automation Guide 29 / 59

Note
As time moves on and Jenkins core and its plugins get updated, support for some older run-time features of the build agents
can get removed (e.g. older Java releases, older Git tooling). While there are projects like Temurin that provide Java builds for
older systems, at some point a switch to "Jenkins agent on new host going into older build container" approach can become
unavoidable. One clue to look at in build logs is failure messages like:

Caused by: java.lang.UnsupportedClassVersionError:
hudson/slaves/SlaveComputer$SlaveVersion has been compiled by a more
recent version of the Java Runtime (class file version 61.0), this version
of the Java Runtime only recognizes class file versions up to 55.0

Using Jenkins SSH Build Agents

This is a typical use-case for tightly integrated build farms under common management, where the Jenkins controller can log by
SSH into systems which act as its build agents. It injects and launches the agent.jar to execute child processes for the builds,
and maintains a tunnel to communicate.

Methods below involving SSH assume that you have configured a password-less key authentication from the host machine to the
abuild account in each guest build environment container. This can be an ssh-keygen result posted into authorized_keys,
or a trusted key passed by a chain of ssh agents from a Jenkins Credential for connection to the container-hoster into the container.
The private SSH key involved may be secured by a pass-phrase, as long as your Jenkins Credential storage knows it too. Note
that for the approaches explored below, the containers are not directly exposed for log-in from any external network.

• For passing the agent through an SSH connection from host to container, so that the agent.jar runs inside the container
environment, configure:

– Launch method: "Agents via SSH"

– Host, Credentials, Port: as suitable for accessing the container-hoster

Note
The container-hoster should have accessed the guest container from the account used for intermediate access, e.g.
abuild, so that its .ssh/known_hosts file would trust the SSH server on the container.

– Prefix Start Agent Command: content depends on the container name, but generally looks like the example below to report
some info about the final target platform (and make sure java is usable) in the agent’s log. Note that it ends with un-closed
quote and a space char:

ssh jenkins-debian10-amd64 '(java -version & uname -a ; getconf LONG_BIT; getconf ←↩
WORD_BIT; wait) &&

– Suffix Start Agent Command: a single quote to close the text opened above:

'

• The other option is to run the agent.jar on the host, for all the network and filesystem magic the agent does, and only
execute shell steps in the container. The solution relies on overridden sh step implementation in the jenkins-dynamatrix
shared library that uses a magic CI_WRAP_SH environment variable to execute a pipe into the container. Such pipes can be
ssh or chroot with appropriate host setup described above.

Note
In case of ssh piping, remember that the container’s /etc/ssh/sshd_config should AcceptEnv * and the SSH
server should be restarted after such configuration change.

NUT Quality Assurance and Build Automation Guide 30 / 59

– Launch method: "Agents via SSH"

– Host, Credentials, Port: as suitable for accessing the container-hoster

– Prefix Start Agent Command: content depends on the container name, but generally looks like the example below to report
some info about the final target platform (and make sure it is accessible) in the agent’s log. Note that it ends with a space
char, and that the command here should not normally print anything into stderr/stdout (this tends to confuse the Jenkins
Remoting protocol):

echo PING > /dev/tcp/jenkins-debian11-ppc64el/22 &&

– Suffix Start Agent Command: empty

• Node properties / Environment variables:

– CI_WRAP_SH⇒

ssh -o SendEnv='*' "jenkins-debian11-ppc64el" /bin/sh -xe

Using Jenkins Swarm Agents

This approach allows remote systems to participate in the NUT CI farm by dialing in and so defining an agent. A single
contributing system may be running a number of containers or virtual machines set up following the instructions above, and each
of those would be a separate build agent.

Such systems should be "dedicated" to contribution in the sense that they should be up and connected for days, and sometimes
tasks would land.

Configuration files maintained on the Swarm Agent system dictate which labels or how many executors it would expose, etc.
Credentials to access the NUT CI farm Jenkins controller to register as an agent should be arranged with the farm maintainers,
and currently involve a GitHub account with Jenkins role assignment for such access, and a token for authentication.

The jenkins-swarm-nutci repository contains example code from such setup with a back-up server experiment for the NUT CI
farm, including auto-start method scripts for Linux systemd and upstart, illumos SMF, and OpenBSD rcctl.

5.5.4 Sequentializing the stress

Running one agent at a time

Another aspect of farm management is that emulation is a slow and intensive operation, so we can not run all agents and execute
builds at the same time.

The current solution relies on https://github.com/jimklimov/conflict-aware-ondemand-retention-strategy-plugin to allow co-located
build agents to "conflict" with each other — when one picks up a job from the queue, it blocks neighbors from starting; when it
is done, another may start.

Containers can be configured with "Availability⇒ On demand", with shorter cycle to switch over faster (the core code sleeps a
minute between attempts):

• In demand delay: 0;

• Idle delay: 0 (Jenkins may change it to 1);

• Conflicts with: ˆci-debian-altroot--.*$ assuming that is the pattern for agent definitions in Jenkins — not necessarily
linked to hostnames.

Also, the "executors" count should be reduced to the amount of compilers in that system (usually 2) and so avoid extra stress of
scheduling too many emulated-CPU builds at once.

https://github.com/networkupstools/jenkins-swarm-nutci
https://github.com/jimklimov/conflict-aware-ondemand-retention-strategy-plugin

NUT Quality Assurance and Build Automation Guide 31 / 59

Sequentializing the git cache access

As part of the jenkins-dynamatrix optional optimizations, the NUT CI recipe invoked via Jenkinsfile-dynamatrix
maintains persistent git reference repositories that can be used to cache NUT codebase (including the tested commits) and so
considerably speed up workspace preparation when running numerous build scenarios on the same agent.

Such .gitcache-dynamatrix cache directories are located in the build workspace location (unique for each agent), but on
a system with numerous containers these names can be symlinks pointing to a shared location.

To avoid collisions with several executors updating the same cache with new commits, critical access windows are sequentialized
with the use of Lockable Resources plugin. On the jenkins-dynamatrix side this is facilitated by labels:

DYNAMATRIX_UNSTASH_PREFERENCE=scm-ws:nut-ci-src
DYNAMATRIX_REFREPO_WORKSPACE_LOCKNAME=gitcache-dynamatrix:SHARED_HYPERVISOR_NAME

• The DYNAMATRIX_UNSTASH_PREFERENCE tells the jenkins-dynamatrix library code which checkout/unstash strat-
egy to use on a particular build agent (following values defined in the library; scm-ws means SCM caching under the agent
workspace location, nut-ci-src names the cache for this project);

• The DYNAMATRIX_REFREPO_WORKSPACE_LOCKNAME specifies a semi-unique string: it should be same for all co-located
agents which use the same shared cache location, e.g. guests on the same hypervisor; and it should be different for unrelated
cache locations, e.g. different hypervisors and stand-alone machines.

6 Prerequisites for building NUT on different OSes

This chapter aims to list packages with the tools needed on a freshly minimally deployed worker to build as many targets of NUT
recipes as possible, mainly the diverse driver and documentation types.

NUT codebase generally should not depend on particular operating system or kernel technology and version, and with the
operating systems listed below one can benefit from use of containers (jails, zones) to build and test against numerous OS
distributions on one physical or virtual machine, e.g. to cover non-regression with older tool kits while taking advantage of new
releases.

• For Linux systems, we have notes on Custom NUT CI farm build agents: LXC multi-arch containers (or docs/ci-farm-lxc-setup.txt
in NUT sources for up-to-date information)

Some of the below are alternatives, e.g. compiler toolkits (gcc vs. clang) or SSL implementations (OpenSSL vs. Mozilla NSS)
— no problem installing both, at a disk space cost.

Note
Some NUT branches may need additional or different software versions that are not yet included into master branch depen-
dencies, e.g. the DMF (Dynamic Mapping Files) sub-project needs LUA 5.1 for build and run-time, and some Python modules
for build, e.g. using OS packaging or custom call to pip install pycparser.
In case your system still provides a Python 2.x environment (and for some reason you want to use it instead of Python 3.x), but
does not anymore provide a pip nor pycparser packages for it, you may need to use an external bootstrap first, e.g.:

Fetch get-pip.py for python 2.7
:; curl https://bootstrap.pypa.io/pip/2.7/get-pip.py --output get-pip.py
:; python2 get-pip.py
:; python2 -m pip --version
:; python2 -m pip install pycparser

More packages and/or system setup may be needed to actually run NUT with all features enabled; chapters below concern just
with building it.

https://github.com/jenkinsci/lockable-resources-plugin

NUT Quality Assurance and Build Automation Guide 32 / 59

6.1 General call to Test the ability to configure and build

Check out from git, generate files and configure to tailor to your build environment, and build some tests:

:; mkdir -p nut && cd nut && \
git clone https://github.com/networkupstools/nut/ -b master .

:; ./autogen.sh && \
./configure --with-doc=all --with-all --with-cgi && \
make all && make check && make spellcheck

You can toggle some configure options to check different dependency variants, e.g. --with-ssl=nss vs. --with-ssl=openssl

For reproducible runs of various pre-sets of configuration during development, take a look at ci_build.sh script and different
BUILD_TYPE (and other) environment variable settings that it supports. A minimal run with it is just to call the script, e.g.:

:; mkdir -p nut && cd nut && \
git clone https://github.com/networkupstools/nut/ -b fightwarn .

:; ./ci_build.sh

Note
To build older releases, such as "vanilla" NUT 2.7.4 and older, you may need to address some nuances:

• Ensure that python in PATH points to a python-2.x implementation (master branch is fixed to work with python 2 and 3)

• Ensure that bash is your user and maybe system shell (or ensure the generated configure script gets interpreted by it)

• Generally you may have better results with GNU Make newer than 3.81 than with other make implementations; however,
builds are regularly tested by CI with Sun dmake and BSD make as well, so recipes should not expect GNU-only syntax and
constructs to work

• Parallel builds should be okay in current development version and since NUT 2.8.0 (is a bug to log and fix, if not), but they
may be failure-prone in 2.7.4 and earlier releases

For intensive rebuilds, ccache is recommended. Note that instructions below detail how to provide its directory with symlinks
as /usr/lib/ccache which is not the default case in all OS distributions. Recent versions of the NUT ci_build.sh script
allow to override the location by using the CI_CCACHE_SYMLINKDIR environment variable, which is cumbersome and only
recommended for build agents with immutable system areas, etc.

6.2 Build prerequisites to make NUT from scratch on various Operating Systems

6.2.1 Debian 10/11/12

Being a popular baseline among Linux distributions, Debian is an important build target. Related common operating systems
include Ubuntu and customized distros for Raspberry Pi, Proxmox, as well as many others.

For some (newer) distributions, apt or other front-ends may be preferable to apt-get, but otherwise the commands are
equivalent.

The package list below should largely apply to those as well, however note that some well-known package names tend to differ.
A few of those are noted below.

Note
While Debian distros I’ve seen (8 to 11) provide a "libusb-dev" for libusb-0.1 headers, the binary library package name is
specifically versioned package by default of the current release (e.g. "libusb-0.1-4"), while names of both the library and
development packages for libusb-1.0 must be determined with:

:; apt-cache search 'libusb.*1\.0.*'

yielding e.g. "libusb-1.0-0-dev" (string name was seen with different actual package source versions on both Debian 8 "Jessie"
and Debian 11 "Buster").

NUT Quality Assurance and Build Automation Guide 33 / 59

FUN NOTE
For development on the road (or a native ARM build) you can use the Termux project on Android. It provides a sufficiently
Debian-like operating environment for all intents and purposes, but you may have to use their pkg wrapper instead of apt
tooling directly, and ldd may be in a package separate from binutils, but otherwise the Debian/Ubuntu oriented lists of
packages below apply.
You would need at least a couple of gigabytes available on the internal phone storage though, especially if using ccache or
setting up cross builds.
The Termux distribution as of this writing seems to lack cppunit packages but you can build it from https://www.freedesktop.org/-
wiki/Software/cppunit/ e.g. --with-prefix=${HOME}/nut-deps/usr and make install there. A custom
PKG_CONFIG_PATH=${HOME}/nut-deps/usr/lib/pkgconfig would find it during NUT build.

Debian-like package installations commonly start with an update of metadata about recently published package revisions:

:; apt-get update

:; apt-get install \
ccache time \
git perl curl \
make autoconf automake libltdl-dev libtool binutils \
valgrind \
cppcheck \
pkg-config \
gcc g++ clang

To debug eventual core dump files, or trace programs with an IDE like
NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; apt-get install \

gdb

NOTE: Older Debian-like distributions may lack a "libtool-bin"
:; apt-get install \

libtool-bin

See comments below, python version and package naming depends on distro
:; apt-get install \

python

NOTE: For python, you may eventually have to specify a variant like this
(numbers depending on default or additional packages of your distro):
:; apt-get install python2 python2.7 python-is-python2
and/or:
:; apt-get install python3 python3.9
You can find a list of what is (pre-)installed with:
:; dpkg -l | grep -Ei 'perl|python'
#
For localization maintenance (currently in Python NUT-Monitor app),
provide an `msgfmt` implementation, e.g.:
:; apt-get install gettext
#
To install the Python NUT-Monitor app, you may need some modules:
:; apt-get install pip
For Python3:
:; python3 -m pip install PyQt5 configparser

For spell-checking, highly recommended if you would propose pull requests:
:; apt-get install \

aspell aspell-en

https://termux.dev/en/
https://www.freedesktop.org/wiki/Software/cppunit/
https://www.freedesktop.org/wiki/Software/cppunit/

NUT Quality Assurance and Build Automation Guide 34 / 59

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; apt-get install \

asciidoc source-highlight python3-pygments dblatex

For CGI graph generation - massive packages (X11):
:; apt-get install \

libgd-dev

Optionally for sd_notify integration:
:; apt-get install \

libsystemd-dev

NOTE: Some older Debian-like distributions, could ship "libcrypto-dev"
and/or "openssl-dev" instead of "libssl-dev" by its modern name
and may lack a libgpiod2 + libgpiod-dev altogether
:; apt-get install \

libcppunit-dev \
libssl-dev libnss3-dev \
augeas-tools libaugeas-dev augeas-lenses \
libusb-dev libusb-1.0-0-dev \
libi2c-dev \
libmodbus-dev \
libsnmp-dev \
libpowerman0-dev \
libfreeipmi-dev libipmimonitoring-dev \
libavahi-common-dev libavahi-core-dev libavahi-client-dev

For libneon, see below

NOTE: Older Debian-like distributions may lack a "libgpiod-dev"
Others above are present as far back as Debian 7 at least
:; apt-get install \

libgpiod-dev

NOTE: Some distributions lack a lua*-dev and only offer the base package
:; apt-get install lua5.1
:; apt-get install lua5.1-dev || true

:; apt-get install \
bash dash ksh busybox

Alternatives that can depend on your system’s other packaging choices:

:; apt-get install libneon27-dev
... or
:; apt-get install libneon27-gnutls-dev

Over time, Debian and Ubuntu had different packages and libraries providing the actual methods for I2C; if your system lacks
the libi2c (and so fails to ./configure --with-all), try adding the following packages:

:; apt-get install build-essential git-core libi2c-dev i2c-tools lm-sensors

For cross-builds (note that not everything supports multilib approach, limiting standard package installations to one or another
implementation; in that case local containers each with one ARCH may be a better choice, with qemu-user-static playing
a role to "natively" run the other-ARCH complete environments):

:; apt-get install \
gcc-multilib g++-multilib \
crossbuild-essential \
gcc-10:armhf gcc-10-base:armhf \
qemu-user-static

NUT Quality Assurance and Build Automation Guide 35 / 59

Note
For Jenkins agents, also need to apt-get install openjdk-17-jdk-headless. You may have to ensure that
/proc is mounted in the target chroot (or do this from the running container).

6.2.2 CentOS 6 and 7

CentOS is another popular baseline among Linux distributions, being a free derivative of the RedHat Linux, upon which many
other distros are based as well. These systems typically use the RPM package manager, using directly rpm command, or yum or
dnf front-ends depending on their generation.

For CI farm container setup, prepared root filesystem archives from http://download.proxmox.com/images/system/ worked suffi-
ciently well.

Prepare CentOS repository mirrors

For CentOS 7 it seems that not all repositories are equally good; some of the software below is only served by EPEL (Extra
Packages for Enterprise Linux), as detailed at:

• https://docs.fedoraproject.org/en-US/epel/

• https://www.redhat.com/en/blog/whats-epel-and-how-do-i-use-it

• https://pkgs.org/download/epel-release

You may have to specify a mirror as the baseurl in a /etc/yum.repos.d/... file (as the aged distributions become less
served by mirrors), such as:

• https://www.mirrorservice.org/sites/dl.fedoraproject.org/pub/epel/7/x86_64/

e.g. for CentOS7 currently:
:; yum install https://download-ib01.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epel- ←↩

release-7-14.noarch.rpm

And edit /etc/yum.repos.d/epel.repo to uncomment and set the baseurl=...
lines, and comment away the mirrorlist= lines (if yum hiccups otherwise)

For systemd support on CentOS 7 (no equivalent found for CentOS 6), you can use backports repository below:

:; curl https://copr.fedorainfracloud.org/coprs/jsynacek/systemd-backports-for-centos-7
> /etc/yum.repos.d/systemd-backports-for-centos-7.repo

For CentOS 6 (the oldest I could try) the situation is similar, with sites like https://www.getpagespeed.com/server-setup/how-
to-fix-yum-after-centos-6-went-eol detailing how to replace /etc/yum.repos.d/ contents (you can wholesale rename the
existing directory and populate a new one with curl downloads from the article), and additional key trust for EPEL packages:

:; yum install https://dl.fedoraproject.org/pub/archive/epel/6/x86_64/epel-release-6-8. ←↩
noarch.rpm

Set up CentOS packages for NUT

Instructions below apply to both CentOS 6 and 7 (a few nuances for 6 commented). For newer distributions, dnf may be
preferable to yum, but otherwise the commands are equivalent.

General developer system helpers mentioned in Custom NUT CI farm build agents: LXC multi-arch containers (or docs/ci-farm-lxc-setup.txt
in NUT sources for up-to-date information):

http://download.proxmox.com/images/system/
https://docs.fedoraproject.org/en-US/epel/
https://www.redhat.com/en/blog/whats-epel-and-how-do-i-use-it
https://pkgs.org/download/epel-release
https://www.mirrorservice.org/sites/dl.fedoraproject.org/pub/epel/7/x86_64/
https://www.getpagespeed.com/server-setup/how-to-fix-yum-after-centos-6-went-eol
https://www.getpagespeed.com/server-setup/how-to-fix-yum-after-centos-6-went-eol

NUT Quality Assurance and Build Automation Guide 36 / 59

:; yum update

:; yum install \
sudo vim mc p7zip pigz pbzip2 tar

To have SSH access to the build VM/Container, you may have to install and enable it:

:; yum install \
openssh-server openssh-clients

:; chkconfig sshd on
:; service sshd start

If there are errors loading generated host keys, remove mentioned files
including the one with .pub extension and retry with:
#:; service sshd restart

Note
Below we request to install generic python per system defaults. You may request specifically python2 or python3 (or
both): current NUT should be compatible with both (2.7+ at least).

Note
On CentOS, libusb means 0.1.x and libusbx means 1.x.x API version (latter is not available for CentOS 6).

Note
On CentOS, it seems that development against libi2c/smbus is not supported. Neither the suitable devel packages were found,
nor i2c-based drivers in distro packaging of NUT. Resolution and doc PRs are welcome.

:; yum install \
ccache time \
file \
git perl curl \
make autoconf automake libtool-ltdl-devel libtool \
valgrind \
cppcheck \
pkgconfig \
gcc gcc-c++ clang

To debug eventual core dump files, or trace programs with an IDE like
NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; yum install \

gdb

See comments below, python version and package naming depends on distro
:; yum install \

python

NOTE: For python, you may eventually have to specify a variant like this
(numbers depending on default or additional packages of your distro):
:; yum install python-2.7.5
and/or:
:; yum install python3 python3-3.6.8
You can find a list of what is (pre-)installed with:
:; rpm -qa | grep -Ei 'perl|python'

NUT Quality Assurance and Build Automation Guide 37 / 59

Note that CentOS 6 includes python-2.6.x and does not serve newer versions

For spell-checking, highly recommended if you would propose pull requests:
:; yum install \

aspell aspell-en

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; yum install \

asciidoc source-highlight python-pygments dblatex

For CGI graph generation - massive packages (X11):
:; yum install \

gd-devel

Optionally for sd_notify integration (on CentOS 7+, not on 6):
:; yum install \

systemd-devel

NOTE: "libusbx" is the CentOS way of naming "libusb-1.0" (not in CentOS 6)
vs. the older "libusb" as the package with "libusb-0.1"
:; yum install \

cppunit-devel \
openssl-devel nss-devel \
augeas augeas-devel \
libusb-devel libusbx-devel \
i2c-tools \
libmodbus-devel \
net-snmp-devel \
powerman-devel \
freeipmi-devel \
avahi-devel \
neon-devel

#?# is python-augeas needed? exists at least...
#?# no (lib)i2c-devel ...
#?# no (lib)ipmimonitoring-devel ... would "freeipmi-ipmidetectd" cut it at least for run- ←↩

time?
#?# no (lib)gpio(d)-devel - starts with CentOS 8 (or extra repositories for later minor ←↩

releases of CentOS 7)

Some NUT code related to lua may be currently limited to lua-5.1
or possibly 5.2; the former is default in CentOS 7 releases...
:; yum install \

lua-devel

:; yum install \
bash dash ksh

Note
busybox is not packaged for CentOS 7 release; a static binary can be downloaded if needed. For more details, see
https://unix.stackexchange.com/questions/475584/cannot-install-busybox-on-centos

CentOS packaging for 64-bit systems delivers the directory for dispatching compiler symlinks as /usr/lib64/ccache. You
can set it up same way as for other described environments by adding a symlink /usr/lib/ccache:

:; ln -s ../lib64/ccache/ "$ALTROOT"/usr/lib/

https://unix.stackexchange.com/questions/475584/cannot-install-busybox-on-centos

NUT Quality Assurance and Build Automation Guide 38 / 59

Note
For Jenkins agents, also need to install JDK 17 or newer, which is not available for CentOS 6 nor 7 directly (in distribution
packaging). Alternative packaging, such as Temurin from the Adoptium project, is possible (checked for at least CentOS 7),
see their instructions for specific details. This may require updated library package versions as dependencies from the OS
distribution, so you may also have to make sure that your /etc/yum.repos.d/* files (certainly CentOS-Base.repo,
maybe also CentOS-fasttrack.repo and/or CentOS-CR.repo) to use e.g.

baseurl=https://vault.centos.org/centos/$releasever/os/$basearch/

lines if the mirrorlist ones do not suffice to find living mirrors (WARNING: the /os/ part of the URL would vary for different
repository types).

6.2.3 Arch Linux

Update the lower-level OS and package databases:

:; pacman -Syu

Install tools and prerequisites for NUT:

:; pacman -S --needed \
base-devel \
autoconf automake libtool libltdl \
clang gcc \
ccache \
git \
vim python perl \
pkgconf \
cppcheck valgrind

To debug eventual core dump files, or trace programs with an IDE like
NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; pacman -S --needed \

gdb

For spell-checking, highly recommended if you would propose pull requests:
:; pacman -S --needed \

aspell en-aspell

For man-page doc types generation:
:; pacman -S --needed \

asciidoc

For other doc types (PDF, HTML) generation - massive packages (TEX, X11):
:; pacman -S --needed \

source-highlight dblatex

For CGI graph generation - massive packages (X11):
:; pacman -S --needed \

gd

Optionally for sd_notify integration:
:; pacman -S --needed \

systemd

:; pacman -S --needed \
cppunit \
openssl nss \
augeas \
libusb \

https://adoptium.net/installation/linux/#_centosrhelfedora_instructions

NUT Quality Assurance and Build Automation Guide 39 / 59

neon \
net-snmp \
freeipmi \
avahi

#?# no (lib)gpio(d)

:; pacman -S --needed \
lua51

:; pacman -S --needed \
bash dash busybox ksh93

Recommended for NUT CI farm integration (matching specific toolkit versions in a build matrix), and note the unusual location
of /usr/lib/ccache/bin/ for symlinks:

:; gcc --version
gcc (GCC) 12.2.0
...

Note: this distro delivers "gcc" et al as file names
so symlinks like this may erode after upgrades.
TODO: Rename and then link?..
:; (cd /usr/bin \

&& for V in 12 12.2.0 ; do for T in gcc g++ cpp ; do \
ln -fsr $T $T-$V ; \

done; done)
:; (cd /usr/lib/ccache/bin/ \

&& for V in 12 12.2.0 ; do for T in gcc g++ ; do \
ln -fsr /usr/bin/ccache $T-$V ; \

done; done)

:; clang --version
clang version 14.0.6
...

:; (cd /usr/bin && ln -fs clang-14 clang++-14 && ln -fs clang-14 clang-cpp-14)
:; (cd /usr/lib/ccache/bin/ \

&& for V in 14 ; do for T in clang clang++ ; do \
ln -fsr /usr/bin/ccache $T-$V ; \

done; done)

Also for CI build agents, a Java environment (JDK17+ since autumn 2024) is required:

Search for available Java versions:
:; pacman -Ss | egrep 'jre|jdk'

Pick one:
:; pacman -S --needed \

jre17-openjdk-headless

If needed to change default implementation, consult:
:; archlinux-java help

6.2.4 Slackware Linux 15

Another long-term presence in the Linux landscape, and sometimes the baseline for appliances, the Slackware project recently
hit release 15 in 2022, averaging two years per major release.

It can be installed e.g. in a VM, using ISO images from the project site; see:

NUT Quality Assurance and Build Automation Guide 40 / 59

• http://www.slackware.com/⇒ http://www.slackware.com/getslack/⇒ https://mirrors.slackware.com/slackware/slackware-iso/-
slackware64-15.0-iso/

• https://slackware.nl/slackware/slackware64-current-iso/

You would have to first log in as root and run cgdisk to define partitioning for your virtual HDD, such as the common
/boot, swap and / Linux layout, and run setup to install "everything".

Note that "out of the box" Slackware does not currently on networked package repositories and calculated dependency trees, so
one has to know exactly what they want installed.

Third-party projects for package managers are also available, e.g. slackpkg⇒ see also https://docs.slackware.com/slackware:slackpkg
and https://slackpkg.org/stable/ :

:; wget https://slackpkg.org/stable/slackpkg-15.0.10-noarch-1.txz && \
installpkg slackpkg-15.0.10-noarch-1.txz

Uncomment a mirror from /etc/slackpkg/mirrors according to your location and other preferences (or use the top-listed
default), and begin with:

:; slackpkg update

Note that packages may be only installed or re-installed/upgraded as separate explicit operations, so the procedure to bring your
system into needed shape is a bit cumbersome (and each command may by default be interactive with a choice menu), e.g.:

:; for P in \
bash mc vim sudo \
; do slackpkg info "$P" || slackpkg install $P || break ; done

For procedures below, this is automated via root profile to become a slackpkg-install command:

:; grep "slackpkg-install" ~/.profile || {
echo 'slackpkg-install() { for P in "$@" ; do echo "=== $P:"; slackpkg info "$P" || ←↩

slackpkg install "$P" || break ; done; }' >> ~/.profile
}

:; . ~/.profile

If something has a hiccup, it suggests to look for the right name, e.g.:

:; slackpkg search python

For NUT dependencies and build tools:

:; slackpkg update

Baseline toolkits:
Note there is no cppcheck, cppunit, valgrind...
Note clang compiler tools are part of llvm package
:; slackpkg-install \

ccache time \
coreutils diffutils \
git python3 perl curl \
make autoconf automake libtool binutils \
pkg-config \
gcc llvm

To debug eventual core dump files, or trace programs with an IDE like
NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; slackpkg-install gdb

For spell-checking, highly recommended if you would propose pull requests:
:; slackpkg-install aspell{,-en}

http://www.slackware.com/
http://www.slackware.com/getslack/
https://mirrors.slackware.com/slackware/slackware-iso/slackware64-15.0-iso/
https://mirrors.slackware.com/slackware/slackware-iso/slackware64-15.0-iso/
https://slackware.nl/slackware/slackware64-current-iso/
https://slackpkg.org/documentation.html
https://docs.slackware.com/slackware:slackpkg
https://slackpkg.org/stable/

NUT Quality Assurance and Build Automation Guide 41 / 59

Note there is no direct "asciidoc" nor "a2x", just the competing project
"rubygem-asciidoctor" that NUT currently has no recipes for, so you can
not compile man/html/pdf docs here, per the default repository. See below
for tools from alternative repositories, which seem to work well. Man page
compilation would require docbook-xml resources; older versions are in
this package https://slackbuilds.org/repository/15.0/system/docbook-xml/
and recent ones are in not-installed part of main repository:
:; slackpkg-install linuxdoc-tools

More on Python (for NUT-Monitor UI):
:; slackpkg-install \

python-pip qt5 gettext-tools gettext

For CGI graph generation - massive packages (X11):
:; slackpkg-install \

gd

General dependencies:
:; slackpkg-install \

openssl openssl-solibs mozilla-nss \
libusb \
net-snmp \
neon

Shells:
:; slackpkg-install \

bash dash ksh93

Some more packages are available on the side, including Java (useful e.g. to make this environment into a fully fledged Jenkins
worker). Other common NUT dependencies absent from primary Slackware repositories can be found and downloaded (seek
*.txz package files, although a few are named *.tgz) from here, and passed to installpkg:

• http://www.slackware.com/~alien/slackbuilds/openjdk17/

• http://www.slackware.com/~alien/slackbuilds/asciidoc/

• http://www.slackware.com/~alien/slackbuilds/cppunit/

• http://www.slackware.com/alien/slackbuilds/lua/ (5.1 in "stable") and http://www.slackware.com/alien/slackbuilds/lua53/ (5.4 in "current" as of
Slackware 15.1 candidate in the works) — note that LUA is not needed for the current NUT code base, but may become needed
after import of features from forks

. . . and even the environment for Windows cross-builds, ancient compilers and modern toolkits to cover all bases:

• http://www.slackware.com/~alien/slackbuilds/MinGW-w64/

• http://www.slackware.com/~alien/slackbuilds/docker/

• http://www.slackware.com/~alien/slackbuilds/gcc34/

• http://www.slackware.com/~alien/slackbuilds/gcc5/

FWIW, another "more official" but older Java package seems to be at:

• http://www.slackware.com/~alien/slackbuilds/openjdk/

• https://slackbuilds.org/repository/15.0/development/jdk/

An example routine to install the latest instance of a package could be like this:

http://www.slackware.com/~alien/slackbuilds/openjdk17/
http://www.slackware.com/~alien/slackbuilds/asciidoc/
http://www.slackware.com/~alien/slackbuilds/cppunit/
http://www.slackware.com/
http://www.slackware.com/
http://www.slackware.com/~alien/slackbuilds/MinGW-w64/
http://www.slackware.com/~alien/slackbuilds/docker/
http://www.slackware.com/~alien/slackbuilds/gcc34/
http://www.slackware.com/~alien/slackbuilds/gcc5/
http://www.slackware.com/~alien/slackbuilds/openjdk/
https://slackbuilds.org/repository/15.0/development/jdk/

NUT Quality Assurance and Build Automation Guide 42 / 59

:; wget -m -l1 http://www.slackware.com/~alien/slackbuilds/asciidoc/pkg/ && \
find . -name '*.t?z'

:; installpkg ./www.slackware.com/~alien/slackbuilds/asciidoc/pkg/asciidoc-8.1.0-noarch-2. ←↩
tgz

Note that some packages are further separated by Slackware version, e.g. with sub-directories for 15.0 and current:

:; wget -r -l1 -nd -R gif,css,jpg,html,htm --remove-listing \
http://www.slackware.com/~alien/slackbuilds/openjdk17/pkg64/15.0/

:; installpkg openjdk17-17.0.12_7-x86_64-1alien.txz

Upon community members’ recommendations, Sotirov’s SlackPack is also considered a reputable repository: https://sotirov-
bg.net/slackpack/ and should cover most if not all of the dependencies required for NUT building (including PowerMan, IPMI
etc.)

Note
If setting up a CI farm agent with builds in RAM disk, keep in mind that default mount options for /dev/shm preclude script
execution. Either set up the agent in a non-standard fashion (to use another work area), or if this is a dedicated machine —
relax the mount options in /etc/fstab.
Here is an example with noexec which we must avoid for such use-case:

:; mount | grep /dev/shm
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime,inode64)

6.2.5 FreeBSD 12.2

Note
As of 2024, this version is way beyond EOL — packages have been removed from mirrors. A discussion at
https://forums.freebsd.org/threads/easy-upgrading-from-12-2-rel-in-2024.92695/ touches on upgrades in such situation. An
alternate mirror (that worked to bump the system to openjdk17, as of this writing in Nov 2024) can be found at
https://mirror.sg.gs/freebsd-pkg/FreeBSD:12:amd64/quarterly/ and written into /etc/pkg/FreeBSD.conf similarly to ex-
isting url entry.

Note that PATH for builds on BSD should include /usr/local/...:

:; PATH=/usr/local/libexec/ccache:/usr/local/bin:/usr/bin:$PATH
:; export PATH

Note
You may want to reference ccache even before all that, as detailed below.

:; pkg install \
git perl5 curl \
gmake autoconf automake autotools libltdl libtool \
valgrind \
cppcheck \
pkgconf \
gcc clang

To debug eventual core dump files, or trace programs with an IDE like

https://sotirov-bg.net/slackpack/
https://sotirov-bg.net/slackpack/
https://forums.freebsd.org/threads/easy-upgrading-from-12-2-rel-in-2024.92695/
https://mirror.sg.gs/freebsd-pkg/FreeBSD:12:amd64/quarterly/

NUT Quality Assurance and Build Automation Guide 43 / 59

NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; pkg install \

gdb

See comments below, python version and package naming depends on distro
:; pkg install \

python

NOTE: For python, you may eventually have to specify a variant like this
(numbers depending on default or additional packages of your distro):
:; pkg install python2 python27
and/or:
:; pkg install python3 python37
You can find a list of what is (pre-)installed with:
:; pkg info | grep -Ei 'perl|python'

For spell-checking, highly recommended if you would propose pull requests:
:; pkg install \

aspell en-aspell

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; pkg install \

asciidoc source-highlight textproc/py-pygments dblatex

For CGI graph generation - massive packages (X11):
:; pkg install \

libgd

:; pkg install \
cppunit \
nss \
augeas \
libmodbus \
neon \
net-snmp \
powerman \
freeipmi \
avahi

NOTE: At least on FreeBSD 12, system-provided crypto exists and is used
by libnetsnmp, libneon, etc. - but is not marked as a package. Conversely,
the openssl-1.1.1k (as of this writing) can be installed as a package into
/usr/local/lib and then causes linking conflicts. The core system-provided
build of openssl does include headers and is useful for NUT build "as is".
ONLY INSTALL THIS PACKAGE IF REQUIRED (may get problems to rectify later):
:; test -e /lib/libcrypto.so -a -e /usr/lib/libssl.so || \

pkg install openssl

:; pkg install \
lua51

:; pkg install \
bash dash busybox ksh93

Recommended:

:; pkg install ccache
:; ccache-update-links

For compatibility with common setups on other operating systems, can symlink /usr/local/libexec/ccache as /usr/lib/ccache
and possibly add dash-number suffixed symlinks to compiler tools (e.g. gcc-10 beside gcc10 installed by package).

NUT Quality Assurance and Build Automation Guide 44 / 59

Note
For Jenkins agents, also need to pkg install openjdk11 (17 or 21 required since autumn 2024) — and do note its
further OS configuration suggestions for special filesystem mounts.

Due to BSD specific paths when not using an implementation of pkg-config or pkgconf (so guessing of flags is left to
administrator — TBD in NUT m4 scripts), better use this routine to test the config/build:

:; ./configure --with-doc=all --with-all --with-cgi \
--without-avahi --without-powerman --without-modbus \
CPPFLAGS="-I/usr/local/include -I/usr/include" \
LDFLAGS="-L/usr/local/lib -L/usr/lib"

Note the lack of pkg-config also precludes libcppunit tests, although they also tend to mis-compile/mis-link with GCC
(while CLANG seems okay).

6.2.6 OpenBSD 6.5

Note that PATH for builds on BSD should include /usr/local/...:

:; PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:$PATH
:; export PATH

Note
You may want to reference ccache even before all that, as detailed below.

OpenBSD delivers many versions of numerous packages, you should specify your pick interactively or as part of package name
(e.g. autoconf-2.69p2).

Note
For the purposes of builds with Jenkins CI agents, since summer 2022 it requires JDK11 which was first delivered with OpenBSD
6.5. Earlier iterations used OpenBSD 6.4 and version nuances in this document may still reflect that.

FIXME: Since autumn 2024, JDK17+ is required. Maybe time to EOL OpenBSD 6.x workers, or to SSH into them from a
nearby machine’s Java agent?.. Alternately, consider https://github.com/adoptium/jdk17/blob/master/doc/building.md

During builds, you may have to tell system dispatcher scripts which version to use (which feels inconvenient, but on the up-side
for CI — this system allows to test many versions of auto-tools in the same agent), e.g.:

:; export AUTOCONF_VERSION=2.69 AUTOMAKE_VERSION=1.13

To use the ci_build.sh don’t forget bash which is not part of OpenBSD base installation. It is not required for "legacy"
builds arranged by just autogen.sh and configure scripts.

Note
The OpenBSD 6.5 install65.iso installation includes a set of packages that seems to exceed whatever is available on
network mirrors; for example, the CD image included clang program while it is not available to pkg_add, at least not via
http://ftp.netbsd.hu/mirrors/openbsd/6.5/packages/amd64/ mirror. The gcc version on CD image differed notably from that
in the networked repository (4.2.x vs. 4.9.x). You may have to echo a working base URL (part before "6.5/. . . " into the
/etc/installurl file, since the old distribution is no longer served by default site.

https://github.com/adoptium/jdk17/blob/master/doc/building.md
http://ftp.netbsd.hu/mirrors/openbsd/6.5/packages/amd64/

NUT Quality Assurance and Build Automation Guide 45 / 59

Optionally, make the environment comfortable, e.g.:
:; pkg_add sudo bash mc wget rsync

:; pkg_add \
git curl \
gmake autoconf automake libltdl libtool \
valgrind \
cppcheck \
pkgconf \
gcc clang

To debug eventual core dump files, or trace programs with an IDE like
NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; pkg_add install \

gdb

See comments below, python version and package naming depends on distro
:; pkg_add \

python

NOTE: For python, you may eventually have to specify a variant like this
(numbers depending on default or additional packages of your distro):
:; pkg_add python-2.7.15p0 py-pip
and/or:
:; pkg_add python-3.6.6p1 py3-pip
although you might succeed specifying shorter names and the packager
will offer a list of matching variants (as it does for "python" above).
NOTE: "perl" is not currently a package, but seemingly part of base OS.
You can find a list of what is (pre-)installed with:
:; pkg_info | grep -Ei 'perl|python'

For spell-checking, highly recommended if you would propose pull requests:
:; pkg_add \

aspell

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; pkg_add \

asciidoc source-highlight py-pygments dblatex \
docbook2x docbook-to-man

For CGI graph generation - massive packages (X11):
:; pkg_add \

gd

:; pkg_add \
cppunit \
openssl nss \
augeas \
libusb1 \
net-snmp \
avahi

For netxml-ups driver the library should suffice; however for nut-scanner
you may currently require to add a `libneon.so` symlink (the package seems
to only deliver a numbered SO library name), e.g.:
:; pkg_add neon && \

if ! test -s /usr/local/lib/libneon.so ; then
ln -s "`cd /usr/local/lib && ls -1 libneon.so.* | sort -n | tail -1`" /usr/local/lib/ ←↩

libneon.so
fi

NUT Quality Assurance and Build Automation Guide 46 / 59

Select a LUA-5.1 (or possibly 5.2?) version
:; pkg_add \

lua

:; pkg_add \
bash dash ksh93

:; pkg_add \
argp-standalone \
freeipmi

Recommended:

:; pkg_add ccache
:; (mkdir -p /usr/lib/ccache && cd /usr/lib/ccache && \

for TOOL in cpp gcc g++ clang clang++ clang-cpp ; do \
ln -s ../../local/bin/ccache "$TOOL" ; \

done ; \
)

:; (cd /usr/bin && for T in gcc g++ cpp ; do ln -s "$T" "$T-4.2.1" ; done)
:; (cd /usr/lib/ccache && for T in gcc g++ cpp ; do ln -s "$T" "$T-4.2.1" ; done)

:; (cd /usr/bin && for T in clang clang++ clang-cpp ; do ln -s "$T" "$T-7.0.1" ; done)
:; (cd /usr/lib/ccache && for T in clang clang++ clang-cpp ; do ln -s "$T" "$T-7.0.1" ; ←↩

done)

For compatibility with common setups on other operating systems, can add dash-number suffixed symlinks to compiler tools
(e.g. gcc-4.2.1 beside gcc installed by package) into /usr/lib/ccache.

Note
For Jenkins agents, also need to pkg_add jdk (if asked, pick version 11 or 17); can request pkg_add jdk%11. You
would likely have to update the trusted CA store to connect to NUT CI, see e.g. (raw!) download from https://gist.github.com/-
galan/ec8b5f92dd325a97e2f66e524d28aaf8 but ensure that you run it with bash and it does wget the certificates (maybe with
--no-check-certificate option if the OS does not trust current internet infrastructure either), and revise the suggested
certificate files vs. https://letsencrypt.org/certificates/ and/or comments to that gist.

Due to BSD specific paths when not using an implementation of pkg-config or pkgconf (so guessing of flags is left to
administrator — TBD in NUT m4 scripts), better use this routine to test the config/build:

:; ./configure --with-doc=all --with-all --with-cgi \
--without-avahi --without-powerman --without-modbus \
CPPFLAGS="-I/usr/local/include -I/usr/include"
LDFLAGS="-L/usr/local/lib -L/usr/lib"

Note the lack of pkg-config also precludes libcppunit tests, although they also tend to mis-compile/mis-link with GCC
(while CLANG seems okay).

6.2.7 NetBSD 9.2

Instructions below assume that pkgin tool (pkg-src component to "install binary packages") is present on the system. Text below
was prepared with a VM where "everything" was installed from the ISO image, including compilers and X11. It is possible that
some packages provided this way differ from those served by pkgin, or on the contrary, that the list of suggested tool installation
below would not include something a bare-minimum system would require to build NUT.

Note that PATH for builds on NetBSD should include local and pkg; the default after installation of the test system was:

https://gist.github.com/galan/ec8b5f92dd325a97e2f66e524d28aaf8
https://gist.github.com/galan/ec8b5f92dd325a97e2f66e524d28aaf8
https://letsencrypt.org/certificates/

NUT Quality Assurance and Build Automation Guide 47 / 59

:; PATH="/sbin:/usr/sbin:/bin:/usr/bin:/usr/pkg/sbin:/usr/pkg/bin:/usr/X11R7/bin:/usr/local ←↩
/sbin:/usr/local/bin"

:; export PATH

Note
You may want to reference ccache even before all that, e.g. in the system-wide /etc/profile or build-user’s
~/.profile, as detailed below:

:; PATH="/usr/lib/ccache:$PATH"
:; export PATH

To use the ci_build.sh don’t forget bash which may be not part of NetBSD base installation. It is not required for "legacy"
builds arranged by just autogen.sh and configure scripts.

Also note that the install-sh helper added by autotools from OS-provided resources when generating the configure
script may be old and its directory creation mode is not safe for parallel-make installations. If this happens, you can work around
by make MKDIRPROG="mkdir -p" install -j 8 for example.

Note
Instructions below rely on pkgin, an apt/yum-like front-end tool for managing pkgsrc binary packages. It is available out of
the box on the system this document describes, but if an e.g. older release lacks it, it can be added using the older tooling:

:; PKG_PATH="http://cdn.NetBSD.org/pub/pkgsrc/packages/NetBSD/$(uname -p)/$(uname -r|cut ←↩
-f '1 2' -d.)/All/"

:; export PKG_PATH
:; pkg_add pkgin

For more details, see https://www.pkgsrc.org/#index1h1 and https://www.librebyte.net/en/cli-en/pkgin-a-netbsd-package-
manager/ (the latter also provides a nice cheat-sheet about pkgin operations).

Note
On NetBSD 9.2 the openpimi and net-snmp packages complain that they require either OS ABI 9.0, or that
CHECK_OSABI=no is set in a pkg_install.conf. Such file was not found in the test system, but can be created in
/etc/ and is honoured by pkgin:

:; grep CHECK_OSABI /etc/pkg_install.conf || \
(echo CHECK_OSABI=no >> /etc/pkg_install.conf)

:; pkgin install \
git perl curl \
mozilla-rootcerts mozilla-rootcerts-openssl \
bmake gmake autoconf automake libltdl libtool \
cppcheck \
pkgconf \
gcc7 gcc14 clang

See comments below, python version and package naming depends on distro
:; pkgin install \

python27 python39 python312 python313

:; (cd /usr/pkg/bin && (ln -fs python2.7 python2 ; ln -fs python3.13 python3))
You can find a list of what is (pre-)installed with:
:; pkgin list | grep -Ei 'perl|python'

https://www.pkgsrc.org/#index1h1
https://www.librebyte.net/en/cli-en/pkgin-a-netbsd-package-manager/
https://www.librebyte.net/en/cli-en/pkgin-a-netbsd-package-manager/

NUT Quality Assurance and Build Automation Guide 48 / 59

For localization maintenance (currently in Python NUT-Monitor app),
provide an `msgfmt` implementation, e.g.:
:; pkgin install gettext
#
To install the Python NUT-Monitor app, you may need some modules:
For Python2:
:; pkgin install py27-gtk2
For Python3:
:; pkgin install py312-qt5 py313-qt5

For spell-checking, highly recommended if you would propose pull requests:
:; pkgin install \

aspell aspell-en

For man-page doc types, footprint on this platform is moderate:
:; pkgin install \

asciidoc

FIXME: Missing packages?
For other doc types (PDF, HTML) generation - massive packages (TEX, X11):
:; pkgin install \
source-highlight py39-pygments dblatex

For CGI graph generation - massive packages (X11):
:; pkgin install \

gd openmp

:; pkgin install \
cppunit \
openssl nss \
augeas \
libusb libusb1 \
neon \
net-snmp \
avahi

Select a LUA-5.1 (or possibly 5.2?) version
:; pkgin install \

lua51 # lua52

:; pkgin install \
bash dash ast-ksh oksh

Note
There seems to be no FreeIPMI for NetBSD, but there’s OpenIPMI (can help someone implementing actual support for it):

:; pkgin install \
openipmi

It still seems to not work for NUT’s expectations of FreeIPMI (we have basic detection support for OpenIPMI but no code yet).

Recommended: For compatibility with common setups on other operating systems, can add dash-number suffixed symlinks to
compiler tools (e.g. gcc-7 beside the gcc installed by package) near the original binaries and into /usr/lib/ccache:

:; (cd /usr/pkg/bin && for TOOL in cpp gcc g++ ; do \
for VER in "7" "14" ; do \

ln -fs "../gcc$VER/bin/$TOOL" "${TOOL}-${VER}" ; \
done ; \

NUT Quality Assurance and Build Automation Guide 49 / 59

done)

Note that the one delivered binary is `clang-13` (in originally described
installation; `clang-18` after an update in 2025 which auto-removed the
older version) and many (unnumbered) symlinks to it. For NUT CI style of
support for builds with many compilers, complete the known numbers:
:; (cd /usr/pkg/bin && for TOOL in clang-cpp clang++ ; do \

for VER in "-18" ; do \
ln -s clang-18 "$TOOL$VER" ; \

done ; \
done)

:; pkgin install ccache
:; (mkdir -p /usr/lib/ccache && cd /usr/lib/ccache && \

for TOOL in cpp gcc g++ clang ; do \
for VER in "" "-7" "-14" ; do \

ln -s ../../pkg/bin/ccache "$TOOL$VER" ; \
done ; \

done ; \
for TOOL in clang clang++ clang-cpp ; do \

for VER in "" "-18" ; do \
ln -s ../../pkg/bin/ccache "$TOOL$VER" ; \

done ; \
done ; \

)

Note
For Jenkins agents, also need to pkgin install openjdk21 (will be in JAVA_HOME=/usr/pkg/java/openjdk21).
Note that the location may be not exposed in PATH by default, so you may want to edit your system-wide /etc/profile or
build user’s ~/.profile with:

JAVA_HOME="/usr/pkg/java/openjdk21"
export JAVA_HOME
PATH="${JAVA_HOME}/bin:${PATH}"
export PATH

6.2.8 OpenIndiana as of releases 2021.10 to 2024.04

Note that due to IPS and pkg(5), a version of python is part of baseline illumos-based OS; this may not be the case on some
other illumos distributions which do not use IPS however. Currently they use python 3.7 or newer.

To build older NUT releases (2.7.4 and before), you may need to explicitly pkg install python-27.

Typical tooling would include:

:; pkg install \
git curl wget \
gnu-make autoconf automake libltdl libtool \
valgrind \
pkg-config \
gnu-binutils developer/linker

To debug eventual core dump files, or trace programs with an IDE like
NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; pkg install \

gdb

NOTE: For python, some suitable version should be available since `pkg(5)`

NUT Quality Assurance and Build Automation Guide 50 / 59

tool is written in it. Similarly, many system tools are written in perl
so some version should be installed. You may specify additional variants
like this (numbers depending on default or additional packages of your
distro; recommended to group `pkg` calls with many packages at once to
save processing time for calculating a build strategy):
:; pkg install runtime/python-27
and/or:
:; pkg install runtime/python-37 runtime/python-35 runtime/python-39
Similarly for perl variants, e.g.:
:; pkg install runtime/perl-522 runtime/perl-524 runtime/perl-534
You can find a list of what is available in remote repositories with:
:; pkg info -r | grep -Ei 'perl|python'

For spell-checking, highly recommended if you would propose pull requests:
:; pkg install \

aspell text/aspell/en

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; pkg install \

asciidoc libxslt \
docbook/dtds docbook/dsssl docbook/xsl docbook docbook/sgml-common pygments-39 \
image/graphviz expect graphviz-tcl

For CGI graph generation - massive packages (X11):
:; pkg install \

gd

:; pkg install \
openssl library/mozilla-nss \
library/augeas python/augeas \
libusb-1 libusbugen system/library/usb/libusb system/header/header-usb driver/usb/ugen ←↩

\
libmodbus \
library/neon \
system/management/snmp/net-snmp \
system/management/powerman \
freeipmi \
avahi

With 2024.04, some packages were split for development vs. run-time
and/or based on architecture:
:; pkg install \

system/library/mozilla-nss/header-nss \
library/nspr library/nspr/32

:; pkg install \
lua

:; pkg install \
dash bash shell/ksh93

Maybe
:; pkg install \

gnu-coreutils

Maybe - after it gets fixed for GCC builds/linkage
:; pkg install \

cppunit

For extra compiler coverage, we can install a large selection of versions, although to meet NUT CI farm expectations we also
need to expose "numbered" filenames, as automated below:

NUT Quality Assurance and Build Automation Guide 51 / 59

NOTE: not all compiler versions may be served, some are obsoleted over time.
Check current distro repository offers with:
:; pkg info -r '*clang*' '*gcc*'
:; pkg search -r '*bin/g++*'
:; pkg search -r '*bin/clang++*'

:; pkg install \
gcc-48 gcc-49 gcc-5 gcc-6 gcc-7 gcc-9 gcc-10 gcc-11 \
clang-80 clang-90 \
ccache

As of this writing, clang-13 refused to link (claiming issues with
--fuse-ld which was never specified) on OI; maybe later it will:
#:; pkg install \
developer/clang-13 runtime/clang-13

With OI 2024.04 there's also clang-18 available in the mix, and as of
2025 packaging, clang-19 as well:
:; pkg install \

developer/clang-19 runtime/clang-19

Get clang-cpp-X visible in standard PATH (for CI to reference the right one),
and make sure other frontends are exposed with versions (not all OI distro
releases have such symlinks packaged right), e.g.:
:; (cd /usr/bin && for X in 8 9 19 ; do for T in "" "++" "-cpp"; do \

ln -fs "../clang/$X.0/bin/clang$T" "clang${T}-${X}" ; \
done; done)

If /usr/lib/ccache/ symlinks to compilers do not appear after package
installation, or if you had to add links like above, call the service:
:; svcadm restart ccache-update-symlinks

We can even include a gcc-4.4.4-il version (used to build the illumos OS ecosystems, at least until recently, which is a
viable example of an old GCC baseline); but note that so far it conflicts with libgd builds at ./configure --with-cgi
stage (its binaries require newer ecosystem):

:; pkg install \
illumos-gcc@4.4.4

Make it visible in standard PATH
:; (cd /usr/bin && for T in gcc g++ cpp ; do \

ln -s ../../opt/gcc/4.4.4/bin/$T $T-4.4.4 ; \
done)

If /usr/lib/ccache/ symlinks to these do not appear, call the service:
:; svcadm restart ccache-update-symlinks

OI currently also does not build cppunit-based tests well, at least not with GCC (they segfault at run-time with ostream
issues); a CLANG build works for that however.

It also lacks out-of-the-box Tex suite and dblatex in particular, which asciidoc needs to build PDF documents. It may be
possible to add these from third-party repositories (e.g. SFE) and/or build from sources.

No pre-packaged cppcheck was found, either.

Note
For Jenkins agents, also need to pkg install runtime/java/openjdk17 for JRE/JDK 17. Java 17 or 21 is required
to run Jenkins agents after autumn 2024. If updating from older releases, you may need to update default implementation, e.g.:

:; pkg set-mediator -V 17 java

NUT Quality Assurance and Build Automation Guide 52 / 59

6.2.9 OmniOS CE (as of release 151036)

Being a minimal-footprint system, OmniOS CE provides very few packages out of the box. There are additional repositories
supported by the project, as well as third-party repositories such as SFE. For some dependencies, it may happen that you would
need to roll and install your own builds in accordance with that project’s design goals.

Note you may need not just the "Core" IPS package publisher, but also the "Extra" one. As of release 151052, it can be attached
right in the installer; otherwise the pkg (set-)publisher commands can be used. See OmniOS CE web site for setup
details.

Optionally, make the environment comfortable, e.g.:
:; pkg install sudo bash application/mc wget rsync pigz pbzip2 p7zip top

NOTE: not all compiler versions may be served, some are obsoleted over time.
While OmniOS LTS 151046 offers a range of clang 13 to 17, current stable
includes also 18 and 19. OmniOS does not provide implicit (not numbered)
packages for clang or gcc. Check your distro repository offers with:
:; pkg info -r '*clang*' '*gcc*'
:; pkg search -r '*bin/g++*'
:; pkg search -r '*bin/clang++*'

:; pkg install \
developer/build/autoconf developer/build/automake \
developer/build/libtool library/libtool/libltdl \
build-essential ccache git developer/pkg-config \
runtime/perl \
asciidoc \
libgd \
developer/clang-17

To debug eventual core dump files, or trace programs with an IDE like
NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; pkg install \

gdb

May be or not be provided, depending on distro age:
:; pkg install \

net-snmp

For crypto-enabled builds:
:; pkg install \

openssl-3

By r151046, some packages were split for development vs. run-time;
to provide support for Mozilla NSS, you need libraries and headers:
:; pkg install \

system/library/mozilla-nss \
system/library/mozilla-nss/header-nss \
library/nspr library/nspr/header-nspr

NOTE: For python, some suitable version should be available since `pkg(5)`
tool is written in it. You may specify an additional variant like this
(numbers depending on default or additional packages of your distro):
:; pkg install runtime/python-37
You can find a list of what is available in remote repositories with:
:; pkg info -r | grep -Ei 'perl|python'

Your OmniOS version may lack a pre-packaged libusb, however the binary build from contemporary OpenIndiana can be used
(copy the header files and the library+symlinks for all architectures you would need).

NUT Quality Assurance and Build Automation Guide 53 / 59

Note
As of July 2022, a libusb-1 package recipe was proposed for the omnios-extra repository (NUT itself and further
dependencies may also appear there, per issue #1498), and is available as of release 151046 and later on:

:; pkg install \
libusb-1

You may need to set up ccache with the same /usr/lib/ccache dir used in other OS recipes. Assuming your Build
Essentials pulled GCC 11 version, and ccache is under /opt/ooce namespace, that would be like:

:; GCCVER=11
:; mkdir -p /usr/lib/ccache
:; cd /usr/lib/ccache
:; ln -fs ../../../opt/ooce/bin/ccache gcc
:; ln -fs ../../../opt/ooce/bin/ccache g++
:; ln -fs ../../../opt/ooce/bin/ccache gcpp
:; ln -fs ../../../opt/ooce/bin/ccache gcc-${GCCVER}
:; ln -fs ../../../opt/ooce/bin/ccache g++-${GCCVER}
:; ln -fs ../../../opt/ooce/bin/ccache gcpp-${GCCVER}

Given that many of the dependencies can get installed into that namespace, you may have to specify where pkg-config will
look for them (note that library and binary paths can be architecture bitness-dependent; the ci_build.sh script should take
care of this for many scenarios):

:; ./configure PKG_CONFIG_PATH="/opt/ooce/lib/amd64/pkgconfig" --with-cgi

You may also have to fiddle with either LD_LIBRARY_PATH, crle (-c) or ./configure --with-something-libs
options to compensate for lack of -R linker options in the pkg-config information provided by that repository: by default the
NUT programs can build with the information they get, but fail to find the needed shared objects at run-time. More about this
situation is tracked at https://github.com/networkupstools/nut/issues/2782

Note also that the minimal footprint nature of OmniOS CE precludes building any large scope easily, so avoid docs and "all
drivers" unless you provide whatever they need to happen.

Note
For Jenkins agents, also need to pkg install runtime/java/openjdk21 for JRE/JDK 17. Java 17 or 21 is required
to run Jenkins agents after autumn 2024. If updating from older releases, you may need to update default implementation, e.g.:

:; pkg set-mediator -V 21 java

6.2.10 Solaris 8

Builds for a platform as old as this are not currently covered by regular NUT CI farm runs, however since the very possibility of
doing this was recently verified, some notes follow.

For context: Following a discussion in the mailing list starting at https://alioth-lists.debian.net/pipermail/nut-upsuser/2022-
December/013051.html and followed up by GitHub issues and PR:

• https://github.com/networkupstools/nut/issues/1736

• https://github.com/networkupstools/nut/issues/1737 (about a possible but not yet confirmed platform problem)

• https://github.com/networkupstools/nut/pull/1738

https://github.com/networkupstools/nut/issues/1498
https://github.com/networkupstools/nut/issues/2782
https://alioth-lists.debian.net/pipermail/nut-upsuser/2022-December/013051.html
https://alioth-lists.debian.net/pipermail/nut-upsuser/2022-December/013051.html
https://github.com/networkupstools/nut/issues/1736
https://github.com/networkupstools/nut/issues/1737
https://github.com/networkupstools/nut/pull/1738

NUT Quality Assurance and Build Automation Guide 54 / 59

. . . recent NUT codebase was successfully built and self-tested in a Solaris 8 x86 VM (a circa 2002 release), confirming the
project’s adherence to the goal that if NUT ran on a platform earlier, so roughly anything POSIX-ish released this millennium
and still running, it should still be possible — at least as far as our part of equation is concerned.

That said, platform shows its age vs. later standards (script interpreters and other tools involved), and base "complete install"
lacked compilers, so part of the tested build platform setup involved third-party provided package repositories.

One helpful project was extensive notes about preparation of the Solaris 8 VM (and our further comments there), which pointed
to the still active "tgcware" repository and contains scripts to help prepare the freshly installed system:

• https://github.com/mac-65/Solaris_8_x86_VM

• https://github.com/mac-65/Solaris_8_x86_VM/issues/1

• http://jupiterrise.com/tgcware/sunos5.8_x86/stable/

Note that scripts attached to the notes refer to older versions of the packages than what is currently published, so I ended up
downloading everything from the repository into the VM and using shell wildcards to pick the packages to install (mind the
package families with similar names when preparing such patterns).

After the OS, tools and feasible third-party dependencies were installed, certain environment customization was needed to prepare
for NUT build in particular (originally detailed in GitHub issues linked above):

• For CONFIG_SHELL, system dtksh seems to support the syntax (unlike default /bin/sh), but for some reason segfaults
during configure tests. Alternatively /usr/tgcware/bin/bash (4.4-ish) can be used successfully. System-provided
bash 2.x is too old for these scripts.

• To run ci_build.shCI/dev-testing helper script, either the shebang should be locally fixed to explicitly call /usr/tgcware/bin/bash,
or the build environment’s PATH should point to this bash implementation as a first hit. If we want to primarily use OS-
provided tools, this latter option may need a bit of creative setup; I made a symlink into the /usr/lib/ccache directory
which has to be first anyway (before compilers).

• The system-provided default grep lacks the -E option which was preferred over generally obsoleted egrep since PR #1660
— however pre-pending /usr/xpg4/bin early in the PATH fixes the problem.

• The builds of gcc in TGCWARE repository were picky about shared objects linking as needed to run them, so LD_LIBRARY_PATH
had to refer to its library directories (generally this is frowned upon and should be a last resort).

• Due to lack of Python in that OS release, NUT augeas support had to be disabled when preparing the build from Git sources
(generated files may be available as part of distribution tarballs however): WITHOUT_NUT_AUGEAS=true; export
WITHOUT_NUT_AUGEAS; ./autogen.sh

Overall, the successful test build using the NUT standard CI helper script ci_build.sh had the following shell session
settings:

Common pre-sets from .profile or .bashrc:
bash-2.03$ echo $PATH
/usr/bin:/usr/dt/bin:/usr/openwin/bin:/bin:/usr/ucb:/usr/tgcware/bin:/usr/tgcware/gnu:/ ←↩

usr/tgcware/gcc42/bin:/usr/tgcware/i386-pc-solaris2.8/bin

bash-2.03$ echo $LD_LIBRARY_PATH
/usr/lib:/usr/tgcware/lib:/usr/tgcware/gcc42/lib:/usr/tgcware/i386-pc-solaris2.8/lib

Further tuning for the build itself:
:; git clean -fffdddxxx
:; CONFIG_SHELL=/usr/tgcware/bin/bash \

WITHOUT_NUT_AUGEAS=true \
PATH="/usr/xpg4/bin:$PATH" \
/usr/tgcware/bin/bash ./ci_build.sh

https://github.com/mac-65/Solaris_8_x86_VM
https://github.com/mac-65/Solaris_8_x86_VM/issues/1
http://jupiterrise.com/tgcware/sunos5.8_x86/stable/
https://github.com/networkupstools/nut/pull/1660

NUT Quality Assurance and Build Automation Guide 55 / 59

6.2.11 MacOS with homebrew

Some CI tests happen on MacOS using a mix of their default xcode environment for compilers, and Homebrew community
packaging for dependencies (including bash since the system one is too old for ci_build.sh script syntax).

See .travis.yml and .circleci/config.yml for practical details of the setup, and https://brew.sh if you want to install
it on your MacOS system (note that its default packaged locations known as HOMEBREW_PREFIX differ depending on archi-
tecture — see https://docs.brew.sh/Installation for more details; find via brew config | grep HOMEBREW_PREFIX: |
awk ’{print $2}’).

Note
The quickest pre-configuration for ci_build.sh integration with this non-default build system would be to add this line into
your shell profile:

eval "$(brew shellenv)"

Note
Homebrew is not the only build/packaging system available for MacOS, so NUT scripts do not make any assumptions nor try to
find a build system they were not told about (via HOMEBREW_PREFIX in this case).

Currently known dependencies for basic build include:

Optional for a quick spin:
:; HOMEBREW_NO_AUTO_UPDATE=1; export HOMEBREW_NO_AUTO_UPDATE

Required:
:; brew install ccache bash libtool binutils autoconf automake git m4 \

pkg-config aspell asciidoc docbook-xsl cppunit gd \
libusb neon net-snmp \
nss openssl \
libmodbus freeipmi powerman

To debug eventual core dump files, or trace programs with an IDE like
NetBeans (perhaps remotely), you may want the GNU Debugger program:
:; brew install gdb

Recommended:
:; brew install curl wget midnight-commander

Note
for asciidoc/a2x to work, you should export XML_CATALOG_FILES with the location of packaged resources
(${HOMEBREW_PREFIX}/etc/xml/catalog). On one test system, man page builds spewed warnings like
<unknown>:1: SyntaxWarning: invalid escape sequence ’\S’ due to incompatibility of older asciidoc
with new Python syntax requirements, but seemed to produce reasonable results otherwise.

Note that ccache is installed in a different location than expected by default in the ci_build.sh script, so if your system
allows to add the symbolic link to /opt/homebrew/opt/ccache/libexec (/usr/local/opt/ccache/libexec
on x86) as /usr/lib/ccache— please do so as the easiest way out.

Alternatively, to prepare building sessions with ci_build.sh you can:

:; export CI_CCACHE_SYMLINKDIR="/opt/homebrew/opt/ccache/libexec"

...or for x86 builders:
#:; export CI_CCACHE_SYMLINKDIR="/usr/local/opt/ccache/libexec"

https://brew.sh
https://docs.brew.sh/Installation

NUT Quality Assurance and Build Automation Guide 56 / 59

Note
For Jenkins agents, also need to brew install --cask temurin@21 for JRE/JDK 21. Java 17 or 21 (an LTS) is
required to run Jenkins agents after summer 2024.

The compiler is part of Apple’s XCode ecosystem. Just try to run clang in a GUI terminal, and a pop-up will appear offer-
ing to install it. Note that you would have to create symbolic links to version-numbered names of compilers, e.g. clang-14
and clang++-14 in both /usr/local/bin (pointing to /bin/clang(++) and in the ccache location prepared above
(pointing to ../bin/ccache), and repeat that in locations prepared by XCode installation such as /Library/Developer/CommandLineTools/usr/bin/
and /usr/local/Homebrew/Library/Homebrew/shims/mac/super/ just as ln -s clang{,-14} ; ln -s
clang++{,-14}. Apparently clang is the only compiler available; various names of gcc* are links to the same binaries.

Warning
Take care to NOT symlink a clang-cpp(-14) which is not a name recognized by XCode dispatcher program, so
requests to it freeze.

On a machine dedicated to CI purposes, it may be wise to disable Spotlight search indexing with sudo mdutil -a -i off,
disable active desktop themes, etc. (normally you would not even log in interactively).

For scratch workers (VMs) also consider going to System Preferences⇒ Software Updates⇒ Advanced, and un-checking all
the boxes (disable the overheads of pulling in the updates you won’t remember in an hour anyway).

If you eventually find that the kernel_task consumes a lot of CPU, this is usually the system’s way of throttling (scheduling A
LOT of high-priority no-op cycles to preempt any other workload). In this case please investigate cooling and hardware compati-
bility (especially in a VM), or find and follow community documentation about neutering IOPlatformPluginFamily.kext
module (probably not on the bare-metal MacOS instance — find the cooling problem there instead).

• https://grafxflow.co.uk/blog/mac-os-x/delete-ioplatformpluginfamilykext-macos-big-sur

6.2.12 Windows builds

There have been several attempts to adjust NUT codebase to native builds for Windows, as well as there are many projects helping
to produce portable programs.

Further TODO for Windows would include:

• MSVCRT (ubiquitous) vs. UCRT (more standards compliant, but since Windows 10) https://docs.microsoft.com/en-us/cpp/-
porting/upgrade-your-code-to-the-universal-crt?view=msvc-160

• libusb-0.1 vs. libusb-1.0

Note
Native mingw, MSYS2, etc. builds on Windows are known to suffer from interaction with antivirus software which holds exe-
cutable files open and so not writable by the linker. This may cause random steps in the configure script or later during the
build to fail. If that happens to you, disable the antivirus completely or exempt at least the NUT build area from protection.

Windows with mingw

See scripts/Windows/README.adoc for original recommendations for the effort, including possibilities of cross-builds
with mingw available in Linux.

Unfortunately these did not work for me at the time of testing, yielding some issues downloading mingw both in Windows and
Linux environments. So I explored other downloads, as detailed below.

See also:

https://grafxflow.co.uk/blog/mac-os-x/delete-ioplatformpluginfamilykext-macos-big-sur
https://docs.microsoft.com/en-us/cpp/porting/upgrade-your-code-to-the-universal-crt?view=msvc-160
https://docs.microsoft.com/en-us/cpp/porting/upgrade-your-code-to-the-universal-crt?view=msvc-160

NUT Quality Assurance and Build Automation Guide 57 / 59

• https://winlibs.com/

• https://azrael.digipen.edu/~mmead/www/public/mingw/

• https://www.mingw-w64.org/downloads/

Note
Seems the mingw installer has problems with current authentication and redirect on SourceForge. You can down-
load and unpack 7z archives from https://sourceforge.net/projects/mingw-w64/files/mingw-w64/mingw-w64-release/ into e.g.
C:\Progra~1\mingw-w64\x86_64-8.1.0-release-posix-seh-rt_v6-rev0 location on your Windows sys-
tem. Then for building further NUT dependencies see scripts/Windows/README.adoc.

Windows with MSYS2

The MSYS2 ecosystem is available at https://www.msys2.org/ and builds upon earlier work by MinGW-w64 (in turn a fork of
MinGW.org (aka mingw-w32)) and Cygwin projects, to name a few related efforts. It also includes pacman similar to that in
Arch Linux for easier dependency installation, and many packages are available "out of the box" this way.

The project is currently sponsored by Microsoft and seems to be supported by Visual Studio Code IDE for building and debugging
projects, for more details see https://code.visualstudio.com/docs/cpp/config-mingw

Notable pages of the project include:

• https://www.msys2.org/ with current download link and first-installation instructions

• https://www.msys2.org/wiki/MSYS2-introduction/ for general overview

• https://packages.msys2.org/search?t=binpkg for search in package repository

After downloading and installing MSYS2 archive for the first time, they suggest to start by updating the base ecosystem (using
their terminal):

:; pacman -Syu

Wait for metadata and base package downloads, agree that all MSYS2 programs including your terminal would be closed/restarted,
and wait for this stage to complete.

Run it again to refresh more of the ecosystem, now without restarting it:

:; pacman -Syu

Finally, install tools and prerequisites for building NUT; note that some of the recommended package names are "umbrellas" for
several implementations, and the pacman would ask you which (or "all") to install in those cases.

Note
Suggestions below use x86_64 generic variants where possible, and clang where available to try both build toolkits on the
platform. If you want to build i686 (32-bit) or alternate backends (e.g. ucrt instead of default msvcrt), poke the repository
search to see what is available.

Note
To build NUT with ci_build.sh (and generally — to help configure script find the dependencies listed below), start the
terminal session with "MSYS2 MinGW x64" shortcut. Other options set up the environment variables for toolkits listed in their
shortcut names, and so tend to prefer "wrong" flags and paths to dependencies (if you have several variants installed). The
"MSYS2 MinGW UCRT x64" was also reported to work.

https://winlibs.com/
https://azrael.digipen.edu/~mmead/www/public/mingw/
https://www.mingw-w64.org/downloads/
https://sourceforge.net/projects/mingw-w64/files/mingw-w64/mingw-w64-release/
https://www.msys2.org/
https://www.mingw-w64.org
https://sourceforge.net/projects/mingw/
http://cygwin.com/
https://code.visualstudio.com/docs/cpp/config-mingw
https://www.msys2.org/
https://www.msys2.org/wiki/MSYS2-introduction/
https://packages.msys2.org/search?t=binpkg

NUT Quality Assurance and Build Automation Guide 58 / 59

To avoid toolkit variant mismatches, you may require to use their specific builds preferentially:

PATH="/mingw64/bin:$PATH"
export PATH

. . . and also add these lines to the ~/.bashrc file.

This covers most of the common FOSS development baseline, including
python, perl, autotools, gcc, clang, git, binutils, make, pkgconf...
:; pacman -S --needed \

base-devel mingw-w64-x86_64-toolchain \
autoconf-wrapper automake-wrapper libtool mingw-w64-x86_64-libltdl \
clang gcc \
ccache mingw-w64-x86_64-ccache \
git aspell aspell-en \
vim python \
mingw-w64-x86_64-python-pygments

PThreads come as an extra feature; note there are many variants,
see https://packages.msys2.org/search?t=binpkg&q=pthread
:; pacman -S --needed \

mingw-w64-x86_64-winpthreads-git \
mingw-w64-clang-x86_64-winpthreads-git

Note that MSYS2 includes libusb-1.0 "natively"
The NUT codebase adjustments for Windows might at this moment expect older
ecosystem via https://github.com/mcuee/libusb-win32 -- subject to fix then.
:; pacman -S --needed \

mingw-w64-x86_64-libusb \
mingw-w64-clang-x86_64-libusb

Seems that the older libusb-win32 (libusb-0.1) is also available as:
:; pacman -S --needed \

mingw-w64-x86_64-libusb-win32 \
mingw-w64-clang-x86_64-libusb-win32

Alternately there is libusb-compat (libusb-1.0 codebase exposing the older
libusb-0.1 API) which SHOULD NOT be installed along with the real libusb-0.1:
:; pacman -S --needed mingw-w64-x86_64-libusb-compat-git mingw-w64-clang-x86_64-libusb- ←↩

compat-git

This also pulls *-devel of several other projects:
:; pacman -S --needed \

mingw-w64-x86_64-neon libneon-devel

Other dependencies:
:; pacman -S --needed \

mingw-w64-x86_64-libmodbus-git \
mingw-w64-clang-x86_64-libmodbus-git \
mingw-w64-x86_64-libgd \
mingw-w64-clang-x86_64-libgd

For C++ tests:
:; pacman -S --needed \

mingw-w64-x86_64-cppunit \
mingw-w64-clang-x86_64-cppunit

ccachewrapper scripts are available as e.g. /mingw64/lib/ccache/bin/gcc and lack a set for clang tools; easy-peasy
fix with:

:; cd /mingw64/lib/ccache/bin
:; for T in clang clang++ clang-cpp ; do sed "s/gcc/$T/" < gcc > "$T" ; chmod +x "$T" ; ←↩

done

NUT Quality Assurance and Build Automation Guide 59 / 59

Note that default ccache seems quirky on Windows MSYS2, possibly due to mixing of the path separator characters and/or
embedding and choking on the C: in path names. Overall it seems unable to create the cache files after it has created the cache
directory tree (though you might have to pre-create the ${HOME}/.ccache anyway, as NUT ci_build.sh script does. As
found in experimentation, setting the PATH consistently for toolkits involved is very important.

• https://github.com/ccache/ccache/discussions/784

• https://sourceforge.net/p/msys2/tickets/253/

Notable packages not found in the repo:

• snmp (net-snmp, ucd-snmp) — instructions in scripts/Windows/README.adoc document now covers building it from
source in MSYS2 MinGW x64 environment, essentially same as for Linux cross builds with proper ARCH and PREFIX

• libregex (C version, direct NUT configure script support was added by the Windows branch); MSYS2 however includes
libpcre pulled by some of the dependencies above. . .

• augeas

• avahi

• powerman

• ipmi

Not installed above (yet?):

• https://packages.msys2.org/search?t=binpkg&q=serial — for these need to first check if termios is part of baseline

Note that ccache symlinks for MSYS2 are installed into /usr/lib/ccache/bin directory (not plain /usr/lib/ccache
as elsewhere).

Note
After you successfully build NUT (perhaps using ci_build.sh), if you install it into a prototype area by make
DESTDIR=... install then you should add the third-party shared libraries involved, for that file set to be usable.
Something along these lines:

:; find "$DESTDIR" -name '*.exe' -type f | while read F ; do ldd "$F" \
| grep ' /mingw64/' ; done | awk '{print $3}' | sort | uniq \
| while read LIB ; do cp -pf "$LIB" "$DESTDIR/mingw64/bin/" ; done

Keep in mind that a similar trick (or links to *.dll— and symlinks are problematic on that platform) may be needed in other
directories, such as sbin and cgi-bin:

:; (cd "$DESTDIR/mingw64/bin/" && ln *.dll ../sbin && ln *.dll ../cgi-bin)

https://github.com/ccache/ccache/discussions/784
https://sourceforge.net/p/msys2/tickets/253/
https://packages.msys2.org/search?t=binpkg&q=serial

	NUT Quality Assurance
	Documentation
	Source code
	Use of standards
	QA tools and metrics
	Runtime quality

	Code and recipe analysis
	GNU Autotools distcheck
	Valgrind checks
	VALGRIND resources

	cppcheck
	Static analysis by compilers
	Pre-set warning options

	Shell script checks
	Documentation spelling checks

	Test automation
	The ci_build.sh script
	Test programs in NUT codebase
	NUT Integration Testing suite (aka NIT)

	Continuous Integration (NUT CI farm) technologies
	CI Farm configuration notes
	Multiple FOSS CI providers and technologies
	Jenkins is the way
	The jenkins-dynamatrix library
	Jenkinsfile-dynamatrix cases in NUT sources
	Jenkins CI

	AppVeyor CI
	CircleCI
	Travis CI
	CodeQL

	Continuous Integration (NUT CI farm) build agent preparation
	Custom NUT CI farm build agents: VMs on DigitalOcean
	Setting up the non-standard VM farm for NUT CI on DigitalOcean
	Design trade-offs
	OS images
	Networking
	Common notes for illumos VMs

	Using the DigitalOcean Recovery ISO
	OpenIndiana
	DO-NUT-CI-OI VM creation
	DO-NUT-CI-OI VM OS transfer
	DO-NUT-CI-OI VM preparation as build agent

	OmniOS
	DO-NUT-CI-OO VM preparation

	FreeBSD
	DO-NUT-CI-FREEBSD VM preparation

	OpenBSD
	DO-NUT-CI-OPENBSD VM creation

	Linux
	DO-NUT-CI-LINUX VM creation
	DO-NUT-CI-LINUX VM OS transfer
	DO-NUT-CI-LINUX VM preparation as build agent

	Custom NUT CI farm build agents: LXC multi-arch containers
	Setting up the multi-arch Linux LXC container farm for NUT CI
	Common preparations
	Setup a container
	Initial container installation (for various guest OSes)
	Initial container-related setup

	Shepherd the herd
	Further setup of the containers
	Arch Linux containers

	Troubleshooting

	Connecting Jenkins to the containers
	Agent Labels
	Labels for QEMU
	Labels for native builds

	Generic agent attributes
	Where to run agent.jar
	Using Jenkins SSH Build Agents
	Using Jenkins Swarm Agents

	Sequentializing the stress
	Running one agent at a time
	Sequentializing the git cache access

	Prerequisites for building NUT on different OSes
	General call to Test the ability to configure and build
	Build prerequisites to make NUT from scratch on various Operating Systems
	Debian 10/11/12
	CentOS 6 and 7
	Prepare CentOS repository mirrors
	Set up CentOS packages for NUT

	Arch Linux
	Slackware Linux 15
	FreeBSD 12.2
	OpenBSD 6.5
	NetBSD 9.2
	OpenIndiana as of releases 2021.10 to 2024.04
	OmniOS CE (as of release 151036)
	Solaris 8
	MacOS with homebrew
	Windows builds
	Windows with mingw
	Windows with MSYS2

